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Abstract

While chain-of-thought (CoT) prompting has
demonstrated remarkable efficacy in enhanc-
ing the reasoning capacities of large language
models (LLMs) for mathematical problem-
solving, the mechanistic foundations underly-
ing these improvements remain inadequately
characterized and lack systematic theoretical
investigation. In this paper, we present Sala-
MAnder (Shapley-based Mathematical Ex-
pression Attribution and Metric), a theoreti-
cally grounded methodology as well as a math-
ematically rigorous evaluation metric for quan-
tifying component-level contributions in CoT
reasoning. Specifically, we leverage Shapley
value for mathematical expression attribution
and develop an efficient stratified sampling al-
gorithm that significantly reduces the compu-
tational complexity. Besides, we develop the
CoSP (Cardinality of Shapley Positives) metric
through covariance analysis. Comprehensive
validation across multiple LLM models and di-
verse mathematical benchmarks demonstrate
that the CoSP metric within our SalaMAnder
framework exhibits a robust monotonic correla-
tion with model performance. This correlation
not only provides theoretical explanations for
the empirical success of existing CoT but also
establishes mathematically rigorous principles
for prompt construction optimization. Finally,
the analytical capabilities of SalaMAnder is
further substantiated by performance improve-
ments achieved through targeted refinement of
low-CoSP components, demonstrating both the
explanatory power and practical utility in un-
derstanding and enhancing CoT reasoning.

1 Introduction

The emergency of chain-of-thought (CoT) reason-
ing has propelled large language models (LLMs) to
achieve human-level performance in complex math-
ematical reasoning tasks, from arithmetic problem
solving to theorem proving. Despite the empir-
ical advances, the field confronts a fundamental

scientific challenge: current understanding of why
specific reasoning steps lead to correct solutions
remains trapped in a cycle of heuristic specula-
tion(Wang et al., 2023; Chen et al., 2024; Wang
et al., 2022; Li et al., 2024; Jin et al., 2024; Pfau
et al., 2024) or labor-intensive verification(Serrano
and Smith, 2019; Bastings and Filippova, 2020;
Madsen et al., 2022; Siddiqui et al., 2024), lacking
systematic theoretical investigation. We reveal that
this issue stems from two fundamental limitations
in existing interpretation methodologies. For one
thing, current approaches predominantly depend
on heuristic-driven engineering practices, where
practitioners optimize CoT demonstrations through
ad hoc trial-and-error adjustments or case-specific
manual inspections. This reliance on empirical
intuition rather than systematic analysis yields ex-
planations that lack both mathematical rigor and
generalizable insights. For another thing, while ap-
proaches such as exact Shapley value computation
(Shapley, 1953; Weber, 1988) provide mathemati-
cal rigor, their exponential complexity renders them
impractical for real-world applications. For exam-
ple, a single Chain-of-Thought demonstration con-
taining just 30 components necessitates over 1 bil-
lion evaluations. The empirical fragility in heuristic
methods and computational infeasibility in rigor-
ous approaches have significantly impeded the de-
velopment of scalable, principled frameworks for
systematic CoT analysis and optimization.

In this paper, we propose a unified frame-
work, namely SalaMAnder (Shapley-based
Mathematical Expression Attribution and Metric),
that introduces two key innovations for efficient
and semantically coherent CoT analysis. First, we
establish mathematical expressions as atomic units
for Shapley-based attribution, addressing the se-
mantic fragmentation inherent in traditional token-
level analyses through component-level decompo-
sition. Then, we develop a novel stratified sam-
pling algorithm, namely SalaMA (Shapley-based
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Figure 1: Workflow of the SalaMAnder Framework and CoSP Metric in CoT for LLMs. Initially, the framework
proposes an efficient Shapley value algorithm to attribute the contributions of various mathematical expressions.
These computed Shapley values are then utilized to derive the CoSP metric. Both theoretical derivations and
extensive experiments across multiple models and datasets validate that CoSP exhibits a robust positive correlation
with model inference accuracy. This correlation provides a comprehensive explanation of the underlying mechanisms

driving CoT behavior in LLMs.

Mathematical Expression Attribution) that achieves
exponential complexity reduction by decompos-
ing Shapley calculations according to component
order, reducing time complexity from O(2"+!)
to O(2mn?), while maintaining rigorous theoret-
ical guarantees. Besides, we develop the CoSP
(Cardinality of Shapley Positives) metric based
on the efficient and semantical shapely estimation.
The proposed CoSP metric within our SalaMAn-
der framework formally establishes the monotonic
relationship with model performance through rig-
orous covariance analysis, providing mathematical
guarantees for the predictive validity.

The contributions of this paper are summarized:

e We propose a unified framework, namely Sala-
MAnder that establishes mathematical expres-
sions as atomic units for Shapley-based attri-
bution and develop a novel stratified sampling
algorithm, namely SalaMA that achieves ex-
ponential complexity reduction while main-
taining rigorous theoretical guarantees.

e We propose the CoSP metric within our
SalaMAnder framework, which formally es-
tablishes the monotonic relationship with
model performance through rigorous covari-
ance analysis, providing mathematical guar-
antees for the predictive validity.

Experimentally, we first utilize SalaMAnder in few-
shot learning scenarios to assess the validity of our
explanation method and metric. Then we further
evaluate the reliability of explanation results. Last

we present novel insights that not only reinforce
the effectiveness of our methods but also integrate
and unify previous research.

2 Related Work

CoT Methodologies CoT prompting, introduced
by Wei et al. (2022), explicitly guides LLMs
to generate intermediate reasoning steps, signif-
icantly improving performance on mathematical
and symbolic tasks. Subsequent work expanded
this paradigm through path optimization (e.g.,
Least-to-Most prompting decomposes problems
into subquestions (Zhou et al., 2022); Progressive-
Hint iteratively refines solutions (Zheng et al.,
2023)), automation (e.g., Automatic CoT gener-
ates demonstrations via LLMs (Zhang et al., 2022);
Symbolic CoT Distillation transfers CoT ability to
smaller models (Li et al., 2023)), and hybrid ap-
proaches (e.g., CoF-CoT combines coarse-to-fine
prompting for multi-domain tasks (Nguyen et al.,
2023); Deductive Verification adds formal consis-
tency checks (Ling et al., 2023)). Despite these
advances, most methods rely on heuristic designs
without theoretical guarantees, and their efficacy
varies significantly across domains—mathematical
tasks benefit more from structured CoT than open-
ended reasoning.

Mechanistic Studies of CoT Reasoning The
existing literature on CoT mechanisms unfolds
through complementary empirical and theoretical
lenses. Empirical studies (Wang et al., 2022; Li



etal., 2024; Jin et al., 2024; Wang et al., 2023; Pfau
et al., 2024; Chen et al., 2024) have explored vari-
ous strategies to enhance the robustness, safety, and
structural integrity of CoT reasoning. For instance,
self-consistency mechanisms (Wang et al., 2022)
improve the reliability of reasoning outputs by ag-
gregating multiple reasoning paths, while efforts
to mitigate toxicity (Li et al., 2024) ensure safer
commonsense reasoning. Additionally, research on
step length (Jin et al., 2024), step relevance and
logical order (Wang et al., 2023), hidden state dy-
namics (Pfau et al., 2024), and premise sequence
order (Chen et al., 2024) underscores the impor-
tance of prompt design and structural factors in
optimizing CoT performance.

3 Method

In this section, we introduce the SalaMAnder
framework, designed to explain the mathemati-
cal reasoning mechanisms of CoT in LLMs using
Shapley values. We introduce our method in three
sections: an introduction to Shapley values, the
SalaMAnder sparse computation of these values,
and the CoSP metric for evaluating CoT reasoning
contributions.

3.1 Preliminary: Shapley Values (Fair
Attribution of CoT Constituents)

Shapley values, originating from cooperative game
theory, offer a principled method for fairly distribut-
ing the total gains of a coalition among its individ-
ual players based on their contributions (Shapley,
1953).

Formally, consider a set of players N =
{1,2,...,n} and a reward function v : 2V — R
that assigns a real-valued payoff to every possible
coalition of players. The Shapley value ¢;(v) for
player ¢ is defined as:
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where S is any subset of NV that does not include
playeri, and s = |S|,n = | V| respectively denotes
the number of players in subset .S and set V.
We can further derive from the above expression:
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where ¢y (i) = Es= [v(S U {i}) — v(5)] denotes
the (r + 1)th order shapley value of component 1.

Researchers have proven that the Shapley value
is a unique unbiased method to fairly allocate over-
all reward to each player with four properties: lin-
earity, dummy, symmetry, and efficiency (Weber,
1988). For simplicity, we use ¢ (i) by ignoring the
superscript of ¢, (i) in the following manuscript
without causing ambiguity.

In our framework, each component of the CoT,
such as individual mathematical expressions or a
single word, is treated as a player in the cooperative
game. The reward function v(S) corresponds to a
performance metric of the LLM (e.g., correctness,
or inference logits) when only the components in
subset S are included in the CoT. Consequently, the
Shapley value ¢(7) quantifies the average marginal
contribution of each component to the overall rea-
soning performance across all possible subsets of
components.

3.2 SalaMA: Efficient Sparse Shapley
Computation for CoT Components

Although calculating exact Shapley values for each
component presents significant computational chal-
lenges, the exponential growth in the number of
possible subsets with respect to the number of com-
ponents renders exact computation infeasible for
practical applications. To address the limitation,
we propose SalaMA (Shapley-based Mathematical
Expression Attribution) mechanism, an efficient
algorithm designed to approximate Shapley values
with high accuracy while substantially reducing
computational overhead.

The Players We define each player in the game,
i.e. each component in the demonstration as a math-
ematical expression rather than individual words
or tokens. This decision is motivated by the ob-
servation that single words or tokens can vary in
meaning across different contexts, making their
attribution inconsistent and less meaningful. Math-
ematical expressions, in contrast, maintain their
semantic integrity across diverse reasoning scenar-
ios, providing a more stable and universally ap-
plicable unit for analysis. Additionally, aggregat-
ing tokens into coherent mathematical expressions
significantly reduces the number of components,
thereby mitigating the computational complexity
associated with Shapley value calculations. This
aggregation not only enhances computational effi-
ciency but also ensures that the attribution analysis



remains interpretable and relevant to the model’s
problem-solving mechanisms.

The Reward Function We adopt a reward func-
tion that combines the model’s prediction confi-
dence logits with the correctness of the prediction,
formulated as

v(S) = (L > log po( ye|5)> I(yprea(S) = ")

(=1

pred @ y(
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where 7 Zngl log pg(ye|S) represents the average
confidence score of the model’s prediction by av-
eraging the logits associated with the result tokens
generated when including component subset .S, I(+)
is a binary indicator, and € indicates the string
concatenation operation.

This formulation ensures that the value func-
tion directly reflects the impact of each component
on the model’s performance, addressing the limi-
tations of alternative metrics such as attention or
saliency scores or binary correctness. Attention or
saliency scores do not provide a direct attribution to
the final outcome and can be complex to interpret
(Serrano and Smith, 2019; Bastings and Filippova,
2020; Madsen et al., 2022; Siddiqui et al., 2024),
while a binary correctness metric lacks the sensitiv-
ity needed to capture nuanced contributions. By in-
tegrating confidence logits with correctness, reward
function balances sensitivity and direct attribution,
facilitating a more accurate and interpretable esti-
mation of each component’s contribution.

Efficient Shapley Computation Algorithm The
proposed algorithm systematically approximates
the Shapley values for CoT components through
a structured algorithmic workflow. In exact Shap-
ley value computation, for each component ¢, it
is necessary to evaluate v(S U {i}) — v(S) across
all subsets S C N{i}, leading to a computational
complexity of O(2"*1), where n is the number of
components. This exponential complexity becomes
prohibitively expensive as the number of compo-
nents increases. To mitigate this, SalaMA reduces
the number of necessary inferences by employing
a stratified sampling approach based on the order
of Shapley values.

Specifically, the SalaMA mechanism decom-
poses the Shapley value calculation by order. For

an r-th order Shapley value ¢,, SalaMA randomly
samples r — 1 other mathematical expressions from
the set N/{i}. The number of such samples is de-
noted by sp, with a maximum limit of m, indicat-
ing sp = min(m, (?j)) In the original demon-
stration, aside from the mathematical expressions,
other components (referred to as the "whiteboard")
are always present and remain constant across dif-

ferent subsets.

During inference, for each sampled subset .S’ of
size r — 1, SalaMA constructs two distinct demon-
strations: one containing SU{7} combined with the
whiteboard, and another containing S alone with
the whiteboard. These demonstrations are then fed
into the model to obtain the corresponding reward
functions v(S U {i}) and v(S), respectively. By
iterating over multiple orders and different samples
within each order, SalaMA aggregates the marginal
contributions across various subset configurations.
The approximated shapley value can be derived
from Eq. (1):
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To further enhance computational efficiency,
SalaMA maintains a hash table H to store and re-
trieve the results of previously computed subsets
S. This caching mechanism prevents redundant
inferences by ensuring that once a subset .S has
been evaluated, its corresponding v(.S) does not
need to be recomputed in future iterations. Conse-
quently, the computational complexity of SalaMA
is reduced to O(2 - sp - n?) < O(2mn?), which
is significantly lower than the exact Shapley value
computation’s O(2"*!). The whole workflow is
shown in Algorithm. 1.

3.3 CoSP: Performance-Aligned Causal
Explanation Rationale

We introduce CoSP (Cardinality of Shapley
Positives), a metric defined as the number of ex-
pressions within a demonstration that exhibit posi-
tive average Shapley values minus a weighted non-
positive average Shapley values across multiple
experiments.

Formally, for a demonstration comprising a set



Algorithm 1: SalaMA: Sparse Shapley
Value Computation
Function SalaMA(N,v,n, m):

Initialize ¢[i] < 0 (Vi € N), H « (;

foreach i € N do

for r = 1tondo

sp < min(m, (:f:ll))

for s =1to spdo
S < Sample(r — 1, N \ i);
vg < MemEval(S, H);
vsu; < MemEval(S Ui, H);
o[i] += (vsui—vs)/(spn);

end

end
end
return ¢;

Procedure MemEval(S, H):
if S ¢ H then
| H[S] + v(S);
end
return H[S];

of n expressions N, CoSP is defined as:

|{<z>< )|(i) > 0} —
Z — X 1(g(i) < 0)
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where ¢(i) is the average Shapley value of the i-th
expression, computed over m different problem
instances tested using the same demonstration for-
mulated as ¢(i) = L 37", »®) (1), I(-) is the in-
dicator function, retummg 1 if the condition inside
is true and O otherwise, and A > 0 is the penalty
severity for the number of expressions with nega-
tive Shapley values. And we assume that during the
m CoT reasoning precesses, for each expression i,
there is ¢(F) (i) ~ N (s, 02).

A positive average Shapley value (¢(i) > 0) in-
dicates that the corresponding mathematical expres-
sion contributes positively to the model’s reasoning
performance; conversely, a non-positive one leads
to negative contribution or no contribution. There-
fore, CoSP comprehensively quantifies the number
of expressions that actively enhance or degrade the
model’s efficacy in solving problems. A higher

A {o(i)lo(i) < 0}

CoSP suggests that a greater subset of expressions
within the CoT is beneficial while a smaller subset
harmful, correlating with improved model perfor-
mance. Specifically, we define CoSP-0 and CoSP-
1, with A equals to 0 and 1, respectively.

To substantiate the relationship between CoSP
and performance, we formalize the following two
theorems under specific statistical assumptions.

Theorem 1 Both CoSP-0 and CoSP-1 have posi-
tive correlation with the model performance:

Cov(CoSP,Perf) = (1+X)(64 —9d-) z”: Var(X,

i=1
ZVar

Cov(Perf,CoSP-1) =2(61 —9J_) Z Var(X
i=1

Cov(Perf,CoSP-0) = (64 —

“)

where the meaning of §,d_, X; will be explained
in the proof.

Theorem 2 CoSP-0 has a positive correlation with
the number of expressions n, while CoSP-1 has a
negative correlation with n:

n+1
E[CoSP,11] = (1 + ) sz (n+ 1)\
[COSPn] + Dpy1 — A 5)
E[C0oSP-0y,4+1] — E[CoSP-0,] = pny1 >0
E[CoSP-1,+1] — E[CoSP-1,| = pny1 —1 <0

(6)

The proof of Theo. 1 and Theo. 2 is applied in
Appendix. A.

The number of expressions n in the CoT is of-
ten indicative of the complexity or difficulty of
the reasoning task. Generally, increased reason-
ing difficulty generally leads to better model per-
formance (OpenAl, 2024), provided that the addi-
tional complexity is constructively leveraged. Our
Theo. 2 aligns with this observation by showing
that a higher number of expressions n results in
a higher CoSP-0, which in turn, per Theo. 1, cor-
relates with enhanced model performance. This
consistency underscores the validity of CoSP as a
metric that not only accounts for the quantity of
reasoning steps but also their qualitative impact on
model efficacy.



Datasets Correlation between Metrics and Model Inference Accuracy
LLaMA 2 LLaMA 3 Qwen 2.5
CoSP-0 CoSP-1 SSV  NoE CoSP-0 CoSP-1 SSV  NoE CoSP-0 CoSP-1 SSV NoE

1-shot

GSM8K 0.76 0.65 032 0.76 0.70 0.18 -0.14  0.71 0.64 0.62 0.54 043

MathQA 0.44 0.62 0.63 -0.08 0.37 0.28 0.19  0.10 -0.16 0.28 0.11  -0.22

AQUA 0.40 0.46 0.44 -0.31 -0.21 0.48 039 -040 -0.63 -0.03 -0.03 -0.67

MultiArith 0.60 0.52 0.02 0.53 0.74 0.44 044  0.09 0.78 0.71 0.80 -0.04

SVAMP 0.49 0.28 021 0.14 0.17 0.21 0.08 -0.35 0.56 0.50 0.56 -0.32
2-shot

GSM8K 0.75 0.35 0.14 0.75 0.49 0.26 024 045 0.80 0.48 0.51  0.13

MathQA 0.36 0.46 035 -0.11  -0.20 0.01 0.07 -0.05 -0.20 -0.14  -0.03 -0.06

AQUA 0.56 0.51 048 -0.47 0.09 -0.04 -0.22  -0.50 0.22 0.52 0.55 -0.19

MultiArith ~ -0.04 -0.07  -0.20 -0.31 0.82 0.39 058 -0.24 0.44 0.18 0.16  0.06

SVAMP 0.23 0.05 -0.13  -0.02 0.47 0.44 -0.19  -0.17 0.69 0.61 0.53  -0.02
4-shot

GSM8K 0.77 0.61 0.12 0.52 0.26 0.37 -0.15  -0.20 0.80 0.58 0.52 0.31

MathQA 0.29 -0.26  -046 -0.01 0.40 0.28 -0.02  -0.67 0.18 -0.33  -052 0.14

AQUA 0.80 0.77 -0.10 -0.11  -0.08 0.20 002 -0.19 -0.31 -0.11 -0.05 -043

MultiArith 0.54 0.33 042 022 0.80 0.23 -0.001 -0.47 0.67 0.51 0.24 -0.44

SVAMP 0.63 0.31 022 0.61 0.10 0.07 036 -0.17 0.22 -0.03  -0.14 -0.13

Average 0.51 0.37 0.16 0.14 0.33 0.25 0.11 -0.14 0.31 0.29 025 -0.10

Table 1: The correlation coefficients between different metrics and model inference accuracy across multiple datasets
and models of few-shot tasks. For each dataset and each model, the largest correlation is bolded, indicating the best

interpretation method.
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Figure 2: CoSP of LLaMA 2 and LLaMA 3.

4 Experiments

This section presents a comprehensive evaluation
of the proposed SalaMAnder framework, demon-
strating its applicability across various settings.
Sec 4.1 describes the experimental settings, and
Sec 4.2 utilizes SalaMAnder in few-shot learning
scenarios to assess the validity of our explanation
method and metric. In Sec 4.3, we further evalu-
ate the reliability of explanation results. Sec 4.4
present novel insights that not only reinforce the
effectiveness of our methods but also integrate and

unify previous research.

4.1 Experimental Settings

To evaluate the effectiveness of the proposed
SalaMA method and the CoSP metric, we con-
ducted experiments using three foundational large
language models and five representative mathemat-
ical datasets. The selected models, LLaMA-2-13B-
chat (Touvron et al., 2023), LLaMA-3-8B-Instruct
(Grattafiori et al., 2024), and Qwen2.5-7B-Instruct
(Team, 2024) were chosen for their fundamental
architectures and generalizability, as they are not
overly specialized or pre-trained on extensive math-
ematical datasets. This ensures that our analysis
of CoSP and SalaMA is broadly applicable across
different model paradigms.

For the datasets, we utilized GSM8K (Ouyang
et al., 2022), MathQA (Amini et al., 2019), AQUA
(Ling et al., 2017), MultiArith (Wang et al., 2018),
and SVAMP (Patel et al., 2021). These datasets
were selected for their representativeness in the
mathematical question-answering domain, encom-
passing a range of difficulties where MathQA and
AQUA are approximately equivalent and more chal-
lenging than GSMS8K, which is in turn more dif-
ficult than MultiArith and SVAMP. Specifically,



Datasets

Average Correlation

1-shot 2-shot 4-shot
CoSP-0 CoSP-1 SSV  NoE CoSP-0 CoSP-1 SSV NoE CoSP-0 CoSP-1 SSV  NoE
GSM8K 0.70 0.48 0.24 0.63 0.68 0.36 033 044 0.61 0.52 0.16 0.21
MathQA 0.22 0.39 0.31 -0.07 -0.01 0.11 0.13 -0.07 0.29 -0.10 -0.33  -0.18
AQUA -0.15 0.30 0.27 -0.46 0.29 0.33 0.27 -0.39 0.14 0.29 -0.04 -0.24
MultiArith 0.71 0.56 0.02 042 0.41 0.17 0.18 -0.16 0.64 0.36 022 -0.23
SVAMP 0.41 0.33 0.28 -0.18 0.46 0.37 0.07 -0.07 0.32 0.12 0.15 0.10

Table 2: The correlation coefficients averaged among various models in few-shot tasks. For each dataset, the largest

correlation is bolded, indicating the best interpretation method.

GSMSK consists of grade-school level math prob-
lems, MathQA includes complex multi-step rea-
soning questions, AQUA focuses on arithmetic
and algebraic tasks, MultiArith provides multi-step
arithmetic word problems, and SVAMP introduces
adversarial variations to traditional arithmetic prob-
lems. This selection ensures comprehensive cover-
age of various aspects and complexities inherent in
mathematical QA tasks.

4.2 Attribution Validity: CoSP Metric
Verification in Few-Shot Learning

To evaluate the practical applicability of the pro-
posed SalaMA method and the CoSP metric, we
applied them to few-shot learning scenarios across
multiple mathematical datasets and foundational
language models to assess the correlation between
CoSP and model performance (accuracy), thereby
validating the effectiveness of our framework.

We meticulously constructed demonstrations to
ensure a uniform distribution of mathematical ex-
pressions. Specifically, for one-shot learning tasks,
we constructed demonstrations by selecting 35
question-answer (Q-A) pairs from the training sets
of the GSMS8K, MathQA, and AQUA datasets. Be-
cause the MultiArith and SVAMP datasets include
answers composed solely of single mathematical
expressions, we instead selected 35 Q-A pairs from
the GSMS8K dataset to serve as demonstrations.
These one-shot demonstrations were evenly dis-
tributed, with five Q-A pairs each containing be-
tween one and seven mathematical expressions.
For 2-shot demonstrations, the total number of
expressions ranged from 2 to 10, resulting in 14
unique demonstrations by accounting for multiple
combinations where applicable (e.g., a total of 6
expressions could be achieved by combinations
244 or 3+3). 4-shot demonstrations contained 4-
16 total expressions, with one unique combination
retained per expression count to minimize computa-

tion, producing 13 distinct demonstration sets. This
methodology ensured that both one-shot and few-
shot demonstrations maintained a balanced and
uniform distribution of mathematical expressions,
thereby isolating the effect of expression quantity
on model performance.

We then utilize the proposed SalaMA method to
few-shot learning to get various metrics: CoSP-0,
CoSP-1, SSV (the sum of averaged shapley value,
ie. >I, ¢(i)), NoE(number of expressions, i.e.
n). The correlations of these metrics and model
inference accuracy across diverse datasets and mod-
els in 1, 2, 4-shot scenarios are shown in Tab. 1,
and Tab. 2 record the correlations averaged among
different models.

Observed from Tab. 1, CoSP-0 is the best inter-
pretation metric for all models, and the interpreta-
tion validity of CoSP-0/CoSP-1 is much better than
the other metrics. According to Tab. 2, CoSP-0
serves as the best interpretation metric for GSM8K,
MultiArith, and SVAMP, while CoSP-1 for AQUA.
For MathQA, CoSP-0 serves as the best interpreta-
tion metric in 1 or 2-shot learning, while CoSP-1
the best in 4-shot learning.

4.3 Explanation Reliability: Large-Scale
Testing Assessment of CoSP Explanations

To further assess the reliability of our CoSP expla-
nations, we conducted comprehensive validation
experiments using the entire test set of the GSM8K
dataset with both the LLaMA 2 and LLaMA 3
models. This focused approach ensures generality
while maintaining computational feasibility. We
selected four demonstrations for each model where
the CoSP-0 scores for LLaMA 2 is 173, 121, 280,
235, while for LLaMA 3 is 264, 220, 344, 334.
The experimental outcomes consistently demon-
strated a strong positive correlation between CoSP-
0 scores and model accuracy for both LLaMA 2 and
LLaMA 3. Specifically, for LLaMA 2, the demon-
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Figure 3: Accuracy of demonstrations for low and high CoSP expressions after four types of modifications in test
set across different models and demos: (a) LLaMA2-demol, (b) LLaMA3-demol, (¢) LLaMA2-demo2, and (d)
LLaMA3-demo2. The observed results indicate that the accuracy curve for low CoSP expressions encompasses
that for high CoSP expressions in almost all scenarios, highlighting that alterations on low CoSP expressions yield
overall better performance outcomes compared to alterations on high CoSP expressions.

stration with a CoSP-0 score of 280 achieved the
highest accuracy, followed by demonstrations with
scores of 235, 173, and 121, in descending order of
performance. Similarly, for LLaMA 3, the demon-
stration with a CoSP-0 score of 344 yielded the
highest accuracy, followed by those with scores of
334, 264, and 220. This consistent pattern across
both models indicates that demonstrations with
higher CoSP-0 scores significantly enhance the rea-
soning capabilities of the models, while those with
lower scores contribute less effectively.

4.4 Analytical Extensibility: Discovery of
Novel Insights in CoT

Building upon our previous findings that high
CoSP expressions contribute maximally, while low
ones contributes minimally to model reasoning, we
sought to uncover novel insights into the dynamics
of CoT reasoning processes. Specifically, we ap-
plied four distinct altering to the expression with
highest and lowest CoSP to assess their impact on
model performance. 1) Remove the expression.
2) Replaced the expressions with non-informative
placeholders, i.e. ’...". 3) Introduced calculation er-
rors, for example, converting from ’2 +3=5"to ’2
+ 3 =6’. 4) Introduced process errors, for example,
converting from’2+3=5"t0o’4+7=11". And
we selected two demononstrations and conducted
these experiments on GSM8K datasets, with both
the LLaMA 2 and LLaMA 3 models. The original
demonstration is presented in Appendix B, where
different expressions of CoSP in different colors.
Figures 3 depict the effect of these alterations
on the accuracy of the test set for low and high
CoSP expressions across different demonstrations
and models. It was consistently observed across
almost all experiments that the performance curves
for low CoSP expressions encapsulated those for

high CoSP expressions.

The results suggest that modifications to low
CoSP expressions lead to better performance out-
comes compared to modifications to high CoSP
expressions. This finding further corroborates our
initial hypothesis: low CoSP expressions exert min-
imal influence on model reasoning, whereas high
ones significantly contribute.

Additionally, our experimental findings reveal
several intriguing phenomena. Notably, the re-
moval of certain expressions, the substitution of ex-
pressions with non-informative filler tokens (such
as ’...), and the introduction of errors in either
the result or process of expressions do not nec-
essarily lead to significant degradation in model
performance. This outcome resonates with prior
studies(Pfau et al., 2024; Wang et al., 2023).

5 Conclusion

In this paper, we propose SalaMAnder, a novel
framework for understanding and optimizing
Chain-of-Thought (CoT) reasoning in large lan-
guage models (LLMs). By introducing a theoret-
ically grounded methodology based on Shapley
value attribution and developing the CoSP (Car-
dinality of Shapley Positives) metric, we have
established a mathematically rigorous approach
to quantifying component-level contributions in
CoT reasoning. Extensive validation across vari-
ous LLM models and mathematical benchmarks
demonstrates that the CoSP metric within our Sala-
MAnder framework strongly and monotonically
correlates with model performance. This correla-
tion not only theoretically explains the empirical
success of existing CoT but also provides rigor-
ous guidelines for optimizing prompt construction.
Furthermore, it can be utilized to discover novel
insights resonating with prior studies



Limitation

The limitation of this paper is that we do not have
enough time to conduct all complete experiments
and do case studies.
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A The proof of Theorems

We have three assumptions necessary for the proof:

1. The positive contribution of any expression
has a significant lower bound:

| 6+ > O, s.t.
pi > 04 - I(p; > 0)

2. The non-positive contribution of any expres-
sion has a lower bound:

J6_ <0, s.t.

i > 6L < 0) = 5 - (1 = I(yz; > 0))

3. The contributions of different expressions are
mutually independent when applied to differ-
ent problems:

Cov(gt*
(Vi#3j,1

OR

<k <

(7)) =
m, k 7é )

Here is the proof of Theo. 1:

Proof 1 As illustrated in Sec. 3.3:

¢®) (i) ~ N (pi, 07)
1 « s
EZQS(k i) i

To simplify the expression, we define a positive
contribution indicator X; = I(¢(i) > 0). Thus:

CoSP = znjxi —)\i(l _X
i=1 =1

=(14+X3)) Xi—ni
=1

)

And we define the model performance Per f by
summing the expected shapley value of all expres-
sions:

Perf =Y Elp(i)] = ®)
i=1 =1

12

Thus we can further derive the expression of Per f:

Perfzz,ui-i-z,ui> Z5++Z(5,

1€S4+ ¢Sy 1€S4+ ¢Sy

=3 6T > 0) + 6 T(u <0
=1 1=1

= 0 I(pi > 0)+ Y 6-(1—I(; > 0))
i=1 =1

=nd_+ ) (6 —0-) I(u; > 0)
1=1

P
+(5+_67).COS +nA

no- 1+ X

)

indicating a linear functional relationship between

a lower bound of model performance and CoS P.
And the coveriance between ; and X; is:

Cov(pi, Xi) = E[pi Xi] — B[] E[X;]
where p; > 04+ X; +6_(1
two assumptions.

We define a residual item €; > 0, s.t. :

— X;) based on the first

pi =04 X; +0-(1—X;) + ¢
Then
E[ui Xi] = 6+ E[X7] 4+ 6_E[(1 — X;) X,] + E[e; X;]
The second equation is because X;(1 — X;) = 0.
And
Thus
Cov(p;, Xi) 5+E[X2] + Ele Xi] — 0, E? [Xi]—
O_E[Xi|E[1 — X;] + E[X,]E[e;]
Since E[X;] = E[X?], and E[1 — X;] = 1 - E[X}],
then
EXG]E[1 — X;] = E[X;](1 — E[X;])
= E[X;] - E*[X;]
= E[X7] — E?[X,]
= Va (Xz)
Then
Cov(ui, X;) = (64 — 6—)Var(X;) + Cov(e;, X5)

(10)



Based on the third assumption, we have:

ZZCOV piy (1 4+ X)X

=1 j=1

=3 Conls, (14 M)X

=1

Cov(Perf,CoSP)
_ )\)

=(14+X))_ Cov(u;, X;)
=1

1
=1+ |04 —0- ZVar +ZC0V€1, z]

And since the residual €; has little relevance with
X, the sum of the covariance tends to 0. Thus

Z Var(X

1D

Cov(Perf,CoSP) = (14+ \)(04 —
>0

Specifically, we define CoSP-0 and CoSP-1, with
A equals to 0 and 1, respectively. Then

(64 —0-) ZVar

Cov(Perf,CoSP-0)
(12)

Z Var(X

(13)

Cov(Perf,CoSP-1) = 2(64 —

Thus CoSP has a positive correlation with
model performance.
O

Here is the proof of Theo. 2:
Proof 2 Since X; = I(¢(i) > 0), then X; follows

a Bernoulli distribution:

=a(t)

7

pi=P(X; =1) (14)
where ®(-) is the standard normal distribution cu-
mulative function.

Thus the expected value of CoS P with n expres-

sions is:
— - Hiy
E[CoSP,| = (1+ \) ZE 1 O( Z) nA

:(1+)\)Zpi—n)\
i=1

15)

Thus the expected value of CoSP with n + 1
expressions is:

A) n+1

(1+X) sz

= E[COSPn] + Pn+1 —

[COSPTH_l n + 1

A (16)
Therefore, CoSP-0 increases monotonically with

the number of expressions n, while CoSP-1 de-

eases monotonically with n.

O

i)

13



B Selected Demonstrations

This section presents the selected demon-
strations in Sec 4.4. Expressions with
a light blue background have the lowest CoSP,

those with an orange background have the
highest CoSP, and the remaining expressions are
shown with a light green background .

Question:

Sharon wants to get kitchen supplies.
She admired Angela’s kitchen supplies
which consist of: 20 pots, 6 more
than three times as many plates as
the pots, and half as many cutlery as
the plates. Sharon wants to buy: half
as many pots as Angela, 20 less than
three times as many plates as Angela,
and twice as much cutlery as Angela.
What is the total number of kitchen
supplies Sharon wants to buy?

Answer:

Angela has  6+3%20=«6+3%20=66»66
plates. Angela has
1/2%x66=«1/2%66=33»33

cutlery. Sharon wants to
buy 1/2%20=«1/2%20=10»10
pots. Sharon wants to buy
3%66-20=«3*%66-20=178»178 plates.

Sharon wants to buy 2%*33=«2x33=66»66
cutlery. Sharon wants to buy a total

of 10+178+66=«10+178+66=254»254
kitchen supplies.

Y PP Y,
Question:
Brittany, Alex, and Jamy all share

600 marbles divided between them in
the ratio 3:5:7. 1If Brittany gives
Alex half of her marbles, what’s the

total number of marbles that Alex
has?

Answer:

The total ratio representing
the number of marbles is
3+5 +7 = «3+5+7=15»15 . From the
ratio, the fraction representing
the number of marbles that Brittany
has is 3/15, which is equal

14

to 3/15%600 = «3/15%x600=120»120
marbles.Alex has
5/15%600 = «5/15*x600=200»200

marbles.If Brittany gives half

of her marbles to Alex, Alex receives
1/2%120 = 60 marbles.After receiving
60 marbles from Brittany, Alex has

\7200+6® = «200+60=260»260 marbles.
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