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Abstract

While chain-of-thought (CoT) prompting has001
demonstrated remarkable efficacy in enhanc-002
ing the reasoning capacities of large language003
models (LLMs) for mathematical problem-004
solving, the mechanistic foundations underly-005
ing these improvements remain inadequately006
characterized and lack systematic theoretical007
investigation. In this paper, we present Sala-008
MAnder (Shapley-based Mathematical Ex-009
pression Attribution and Metric), a theoreti-010
cally grounded methodology as well as a math-011
ematically rigorous evaluation metric for quan-012
tifying component-level contributions in CoT013
reasoning. Specifically, we leverage Shapley014
value for mathematical expression attribution015
and develop an efficient stratified sampling al-016
gorithm that significantly reduces the compu-017
tational complexity. Besides, we develop the018
CoSP (Cardinality of Shapley Positives) metric019
through covariance analysis. Comprehensive020
validation across multiple LLM models and di-021
verse mathematical benchmarks demonstrate022
that the CoSP metric within our SalaMAnder023
framework exhibits a robust monotonic correla-024
tion with model performance. This correlation025
not only provides theoretical explanations for026
the empirical success of existing CoT but also027
establishes mathematically rigorous principles028
for prompt construction optimization. Finally,029
the analytical capabilities of SalaMAnder is030
further substantiated by performance improve-031
ments achieved through targeted refinement of032
low-CoSP components, demonstrating both the033
explanatory power and practical utility in un-034
derstanding and enhancing CoT reasoning.035

1 Introduction036

The emergency of chain-of-thought (CoT) reason-037

ing has propelled large language models (LLMs) to038

achieve human-level performance in complex math-039

ematical reasoning tasks, from arithmetic problem040

solving to theorem proving. Despite the empir-041

ical advances, the field confronts a fundamental042

scientific challenge: current understanding of why 043

specific reasoning steps lead to correct solutions 044

remains trapped in a cycle of heuristic specula- 045

tion(Wang et al., 2023; Chen et al., 2024; Wang 046

et al., 2022; Li et al., 2024; Jin et al., 2024; Pfau 047

et al., 2024) or labor-intensive verification(Serrano 048

and Smith, 2019; Bastings and Filippova, 2020; 049

Madsen et al., 2022; Siddiqui et al., 2024), lacking 050

systematic theoretical investigation. We reveal that 051

this issue stems from two fundamental limitations 052

in existing interpretation methodologies. For one 053

thing, current approaches predominantly depend 054

on heuristic-driven engineering practices, where 055

practitioners optimize CoT demonstrations through 056

ad hoc trial-and-error adjustments or case-specific 057

manual inspections. This reliance on empirical 058

intuition rather than systematic analysis yields ex- 059

planations that lack both mathematical rigor and 060

generalizable insights. For another thing, while ap- 061

proaches such as exact Shapley value computation 062

(Shapley, 1953; Weber, 1988) provide mathemati- 063

cal rigor, their exponential complexity renders them 064

impractical for real-world applications. For exam- 065

ple, a single Chain-of-Thought demonstration con- 066

taining just 30 components necessitates over 1 bil- 067

lion evaluations. The empirical fragility in heuristic 068

methods and computational infeasibility in rigor- 069

ous approaches have significantly impeded the de- 070

velopment of scalable, principled frameworks for 071

systematic CoT analysis and optimization. 072

In this paper, we propose a unified frame- 073

work, namely SalaMAnder (Shapley-based 074

Mathematical Expression Attribution and Metric), 075

that introduces two key innovations for efficient 076

and semantically coherent CoT analysis. First, we 077

establish mathematical expressions as atomic units 078

for Shapley-based attribution, addressing the se- 079

mantic fragmentation inherent in traditional token- 080

level analyses through component-level decompo- 081

sition. Then, we develop a novel stratified sam- 082

pling algorithm, namely SalaMA (Shapley-based 083
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Figure 1: Workflow of the SalaMAnder Framework and CoSP Metric in CoT for LLMs. Initially, the framework
proposes an efficient Shapley value algorithm to attribute the contributions of various mathematical expressions.
These computed Shapley values are then utilized to derive the CoSP metric. Both theoretical derivations and
extensive experiments across multiple models and datasets validate that CoSP exhibits a robust positive correlation
with model inference accuracy. This correlation provides a comprehensive explanation of the underlying mechanisms
driving CoT behavior in LLMs.

Mathematical Expression Attribution) that achieves084

exponential complexity reduction by decompos-085

ing Shapley calculations according to component086

order, reducing time complexity from O(2n+1)087

to O(2mn2), while maintaining rigorous theoret-088

ical guarantees. Besides, we develop the CoSP089

(Cardinality of Shapley Positives) metric based090

on the efficient and semantical shapely estimation.091

The proposed CoSP metric within our SalaMAn-092

der framework formally establishes the monotonic093

relationship with model performance through rig-094

orous covariance analysis, providing mathematical095

guarantees for the predictive validity.096

The contributions of this paper are summarized:097

• We propose a unified framework, namely Sala-098

MAnder that establishes mathematical expres-099

sions as atomic units for Shapley-based attri-100

bution and develop a novel stratified sampling101

algorithm, namely SalaMA that achieves ex-102

ponential complexity reduction while main-103

taining rigorous theoretical guarantees.104

• We propose the CoSP metric within our105

SalaMAnder framework, which formally es-106

tablishes the monotonic relationship with107

model performance through rigorous covari-108

ance analysis, providing mathematical guar-109

antees for the predictive validity.110

Experimentally, we first utilize SalaMAnder in few-111

shot learning scenarios to assess the validity of our112

explanation method and metric. Then we further113

evaluate the reliability of explanation results. Last114

we present novel insights that not only reinforce 115

the effectiveness of our methods but also integrate 116

and unify previous research. 117

2 Related Work 118

CoT Methodologies CoT prompting, introduced 119

by Wei et al. (2022), explicitly guides LLMs 120

to generate intermediate reasoning steps, signif- 121

icantly improving performance on mathematical 122

and symbolic tasks. Subsequent work expanded 123

this paradigm through path optimization (e.g., 124

Least-to-Most prompting decomposes problems 125

into subquestions (Zhou et al., 2022); Progressive- 126

Hint iteratively refines solutions (Zheng et al., 127

2023)), automation (e.g., Automatic CoT gener- 128

ates demonstrations via LLMs (Zhang et al., 2022); 129

Symbolic CoT Distillation transfers CoT ability to 130

smaller models (Li et al., 2023)), and hybrid ap- 131

proaches (e.g., CoF-CoT combines coarse-to-fine 132

prompting for multi-domain tasks (Nguyen et al., 133

2023); Deductive Verification adds formal consis- 134

tency checks (Ling et al., 2023)). Despite these 135

advances, most methods rely on heuristic designs 136

without theoretical guarantees, and their efficacy 137

varies significantly across domains—mathematical 138

tasks benefit more from structured CoT than open- 139

ended reasoning. 140

Mechanistic Studies of CoT Reasoning The 141

existing literature on CoT mechanisms unfolds 142

through complementary empirical and theoretical 143

lenses. Empirical studies (Wang et al., 2022; Li 144
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et al., 2024; Jin et al., 2024; Wang et al., 2023; Pfau145

et al., 2024; Chen et al., 2024) have explored vari-146

ous strategies to enhance the robustness, safety, and147

structural integrity of CoT reasoning. For instance,148

self-consistency mechanisms (Wang et al., 2022)149

improve the reliability of reasoning outputs by ag-150

gregating multiple reasoning paths, while efforts151

to mitigate toxicity (Li et al., 2024) ensure safer152

commonsense reasoning. Additionally, research on153

step length (Jin et al., 2024), step relevance and154

logical order (Wang et al., 2023), hidden state dy-155

namics (Pfau et al., 2024), and premise sequence156

order (Chen et al., 2024) underscores the impor-157

tance of prompt design and structural factors in158

optimizing CoT performance.159

3 Method160
In this section, we introduce the SalaMAnder161

framework, designed to explain the mathemati-162

cal reasoning mechanisms of CoT in LLMs using163

Shapley values. We introduce our method in three164

sections: an introduction to Shapley values, the165

SalaMAnder sparse computation of these values,166

and the CoSP metric for evaluating CoT reasoning167

contributions.168

3.1 Preliminary: Shapley Values (Fair169

Attribution of CoT Constituents)170

Shapley values, originating from cooperative game171

theory, offer a principled method for fairly distribut-172

ing the total gains of a coalition among its individ-173

ual players based on their contributions (Shapley,174

1953).175

Formally, consider a set of players N =176

{1, 2, . . . , n} and a reward function v : 2N → R177

that assigns a real-valued payoff to every possible178

coalition of players. The Shapley value ϕi(v) for179

player i is defined as:180

ϕv(i) =
∑

S⊆N\{i}

s!(n− s− 1)!

n!
[v(S ∪ {i})− v(S)]181

where S is any subset of N that does not include182

player i, and s = |S|, n = |N | respectively denotes183

the number of players in subset S and set N .184

We can further derive from the above expression:185

ϕ(i) =
1

n

∑
S⊆N\{i}

1(
n−1
s

) [v(S ∪ {i})− v(S)]186

=
1

n

n−1∑
r=0

Es=r [v(S ∪ {i})− v(S)]187

=
1

n
ϕr+1(i) (1)188

where ϕk(i) = Es=r [v(S ∪ {i})− v(S)] denotes 189

the (r + 1)th order shapley value of component i. 190

Researchers have proven that the Shapley value 191

is a unique unbiased method to fairly allocate over- 192

all reward to each player with four properties: lin- 193

earity, dummy, symmetry, and efficiency (Weber, 194

1988). For simplicity, we use ϕ(i) by ignoring the 195

superscript of ϕv(i) in the following manuscript 196

without causing ambiguity. 197

In our framework, each component of the CoT, 198

such as individual mathematical expressions or a 199

single word, is treated as a player in the cooperative 200

game. The reward function v(S) corresponds to a 201

performance metric of the LLM (e.g., correctness, 202

or inference logits) when only the components in 203

subset S are included in the CoT. Consequently, the 204

Shapley value ϕ(i) quantifies the average marginal 205

contribution of each component to the overall rea- 206

soning performance across all possible subsets of 207

components. 208

3.2 SalaMA: Efficient Sparse Shapley 209

Computation for CoT Components 210

Although calculating exact Shapley values for each 211

component presents significant computational chal- 212

lenges, the exponential growth in the number of 213

possible subsets with respect to the number of com- 214

ponents renders exact computation infeasible for 215

practical applications. To address the limitation, 216

we propose SalaMA (Shapley-based Mathematical 217

Expression Attribution) mechanism, an efficient 218

algorithm designed to approximate Shapley values 219

with high accuracy while substantially reducing 220

computational overhead. 221

The Players We define each player in the game, 222

i.e. each component in the demonstration as a math- 223

ematical expression rather than individual words 224

or tokens. This decision is motivated by the ob- 225

servation that single words or tokens can vary in 226

meaning across different contexts, making their 227

attribution inconsistent and less meaningful. Math- 228

ematical expressions, in contrast, maintain their 229

semantic integrity across diverse reasoning scenar- 230

ios, providing a more stable and universally ap- 231

plicable unit for analysis. Additionally, aggregat- 232

ing tokens into coherent mathematical expressions 233

significantly reduces the number of components, 234

thereby mitigating the computational complexity 235

associated with Shapley value calculations. This 236

aggregation not only enhances computational effi- 237

ciency but also ensures that the attribution analysis 238
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remains interpretable and relevant to the model’s239

problem-solving mechanisms.240

The Reward Function We adopt a reward func-241

tion that combines the model’s prediction confi-242

dence logits with the correctness of the prediction,243

formulated as244 
v(S) =

(
1

L

L∑
ℓ=1

log pθ(yℓ|S)

)
· I(ypred(S) = y∗)

ypred(S) =
L⊕

ℓ=1

yℓ(S)

(2)

245

where 1
L

∑L
ℓ=1 log pθ(yℓ|S) represents the average246

confidence score of the model’s prediction by av-247

eraging the logits associated with the result tokens248

generated when including component subset S, I(·)249

is a binary indicator, and
⊕

indicates the string250

concatenation operation.251

This formulation ensures that the value func-252

tion directly reflects the impact of each component253

on the model’s performance, addressing the limi-254

tations of alternative metrics such as attention or255

saliency scores or binary correctness. Attention or256

saliency scores do not provide a direct attribution to257

the final outcome and can be complex to interpret258

(Serrano and Smith, 2019; Bastings and Filippova,259

2020; Madsen et al., 2022; Siddiqui et al., 2024),260

while a binary correctness metric lacks the sensitiv-261

ity needed to capture nuanced contributions. By in-262

tegrating confidence logits with correctness, reward263

function balances sensitivity and direct attribution,264

facilitating a more accurate and interpretable esti-265

mation of each component’s contribution.266

Efficient Shapley Computation Algorithm The267

proposed algorithm systematically approximates268

the Shapley values for CoT components through269

a structured algorithmic workflow. In exact Shap-270

ley value computation, for each component i, it271

is necessary to evaluate v(S ∪ {i})− v(S) across272

all subsets S ⊆ N{i}, leading to a computational273

complexity of O(2n+1), where n is the number of274

components. This exponential complexity becomes275

prohibitively expensive as the number of compo-276

nents increases. To mitigate this, SalaMA reduces277

the number of necessary inferences by employing278

a stratified sampling approach based on the order279

of Shapley values.280

Specifically, the SalaMA mechanism decom-281

poses the Shapley value calculation by order. For282

an r-th order Shapley value ϕr, SalaMA randomly 283

samples r−1 other mathematical expressions from 284

the set N/{i}. The number of such samples is de- 285

noted by sp, with a maximum limit of m, indicat- 286

ing sp = min(m,
(
n−1
r−1

)
). In the original demon- 287

stration, aside from the mathematical expressions, 288

other components (referred to as the "whiteboard") 289

are always present and remain constant across dif- 290

ferent subsets. 291

During inference, for each sampled subset S of 292

size r − 1, SalaMA constructs two distinct demon- 293

strations: one containing S∪{i} combined with the 294

whiteboard, and another containing S alone with 295

the whiteboard. These demonstrations are then fed 296

into the model to obtain the corresponding reward 297

functions v(S ∪ {i}) and v(S), respectively. By 298

iterating over multiple orders and different samples 299

within each order, SalaMA aggregates the marginal 300

contributions across various subset configurations. 301

The approximated shapley value can be derived 302

from Eq. (1): 303

ϕ(i) =
1

n

n−1∑
r=0

Es=r[v(S ∪ {i} − v(S))] 304

=
1

n

n−1∑
r=0

1

m

m∑
t=1

[v(Sr
t ∪ {i} − v(Sr

t ))] (3) 305

To further enhance computational efficiency, 306

SalaMA maintains a hash tableH to store and re- 307

trieve the results of previously computed subsets 308

S. This caching mechanism prevents redundant 309

inferences by ensuring that once a subset S has 310

been evaluated, its corresponding v(S) does not 311

need to be recomputed in future iterations. Conse- 312

quently, the computational complexity of SalaMA 313

is reduced to O(2 · sp · n2) ⩽ O(2mn2), which 314

is significantly lower than the exact Shapley value 315

computation’s O(2n+1). The whole workflow is 316

shown in Algorithm. 1. 317

3.3 CoSP: Performance-Aligned Causal 318

Explanation Rationale 319

We introduce CoSP (Cardinality of Shapley 320

Positives), a metric defined as the number of ex- 321

pressions within a demonstration that exhibit posi- 322

tive average Shapley values minus a weighted non- 323

positive average Shapley values across multiple 324

experiments. 325

Formally, for a demonstration comprising a set 326
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Algorithm 1: SalaMA: Sparse Shapley
Value Computation

Function SalaMA(N, v, n,m):
Initialize ϕ[i]← 0 (∀i ∈ N), H ← ∅;
foreach i ∈ N do

for r = 1 to n do
sp← min(m,

(
n−1
r−1

)
);

for s = 1 to sp do
S ← Sample(r − 1, N \ i);
vS ← MemEval(S,H);
vS∪i ← MemEval(S ∪ i,H);
ϕ[i] += (vS∪i−vS)/(sp·n);

end
end

end
return ϕ;

Procedure MemEval(S,H):
if S /∈ H then
H[S]← v(S);

end
returnH[S];

of n expressions N , CoSP is defined as:327

CoSP = |{ϕ̄(i)|ϕ̄(i) > 0}| − λ · |{ϕ̄(i)|ϕ̄(i) ⩽ 0}|328

=
n∑

i=1

I(ϕ̄(i) > 0)− λ · I(ϕ̄(i) ⩽ 0)329

= (1 + λ)
n∑

i=1

I(ϕ̄(i) > 0)− λn330

where ϕ̄(i) is the average Shapley value of the i-th331

expression, computed over m different problem332

instances tested using the same demonstration, for-333

mulated as ϕ̄(i) = 1
m

∑m
k=1 ϕ

(k)(i), I(·) is the in-334

dicator function, returning 1 if the condition inside335

is true and 0 otherwise, and λ > 0 is the penalty336

severity for the number of expressions with nega-337

tive Shapley values. And we assume that during the338

m CoT reasoning precesses, for each expression i,339

there is ϕ(k)(i) ∼ N (µi, σ
2
i ).340

A positive average Shapley value (ϕ̄(i) > 0) in-341

dicates that the corresponding mathematical expres-342

sion contributes positively to the model’s reasoning343

performance; conversely, a non-positive one leads344

to negative contribution or no contribution. There-345

fore, CoSP comprehensively quantifies the number346

of expressions that actively enhance or degrade the347

model’s efficacy in solving problems. A higher348

CoSP suggests that a greater subset of expressions 349

within the CoT is beneficial while a smaller subset 350

harmful, correlating with improved model perfor- 351

mance. Specifically, we define CoSP-0 and CoSP- 352

1, with λ equals to 0 and 1, respectively. 353

To substantiate the relationship between CoSP 354

and performance, we formalize the following two 355

theorems under specific statistical assumptions. 356

Theorem 1 Both CoSP-0 and CoSP-1 have posi- 357

tive correlation with the model performance: 358

Cov(CoSP, Perf) = (1 + λ)(δ+ − δ−)
n∑

i=1

Var(Xi) 359

Cov(Perf, CoSP -0) = (δ+ − δ−)
n∑

i=1

Var(Xi) 360

Cov(Perf, CoSP -1) = 2(δ+ − δ−)
n∑

i=1

Var(Xi)

(4)

361

where the meaning of δ+, δ−, Xi will be explained 362

in the proof. 363

Theorem 2 CoSP-0 has a positive correlation with 364

the number of expressions n, while CoSP-1 has a 365

negative correlation with n: 366

E[CoSPn+1] = (1 + λ)
n+1∑
i=1

pi − (n+ 1)λ 367

= E[CoSPn] + pn+1 − λ (5) 368

369

E[CoSP -0n+1]− E[CoSP -0n] = pn+1 > 0 370

E[CoSP -1n+1]− E[CoSP -1n] = pn+1 − 1 < 0
(6)

371

The proof of Theo. 1 and Theo. 2 is applied in 372

Appendix. A. 373

The number of expressions n in the CoT is of- 374

ten indicative of the complexity or difficulty of 375

the reasoning task. Generally, increased reason- 376

ing difficulty generally leads to better model per- 377

formance (OpenAI, 2024), provided that the addi- 378

tional complexity is constructively leveraged. Our 379

Theo. 2 aligns with this observation by showing 380

that a higher number of expressions n results in 381

a higher CoSP-0, which in turn, per Theo. 1, cor- 382

relates with enhanced model performance. This 383

consistency underscores the validity of CoSP as a 384

metric that not only accounts for the quantity of 385

reasoning steps but also their qualitative impact on 386

model efficacy. 387
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Datasets Correlation between Metrics and Model Inference Accuracy

LLaMA 2 LLaMA 3 Qwen 2.5

CoSP-0 CoSP-1 SSV NoE CoSP-0 CoSP-1 SSV NoE CoSP-0 CoSP-1 SSV NoE

1-shot
GSM8K 0.76 0.65 0.32 0.76 0.70 0.18 -0.14 0.71 0.64 0.62 0.54 0.43
MathQA 0.44 0.62 0.63 -0.08 0.37 0.28 0.19 0.10 -0.16 0.28 0.11 -0.22
AQUA 0.40 0.46 0.44 -0.31 -0.21 0.48 0.39 -0.40 -0.63 -0.03 -0.03 -0.67
MultiArith 0.60 0.52 0.02 0.53 0.74 0.44 0.44 0.09 0.78 0.71 0.80 -0.04
SVAMP 0.49 0.28 0.21 0.14 0.17 0.21 0.08 -0.35 0.56 0.50 0.56 -0.32

2-shot
GSM8K 0.75 0.35 0.14 0.75 0.49 0.26 0.24 0.45 0.80 0.48 0.51 0.13
MathQA 0.36 0.46 0.35 -0.11 -0.20 0.01 0.07 -0.05 -0.20 -0.14 -0.03 -0.06
AQUA 0.56 0.51 0.48 -0.47 0.09 -0.04 -0.22 -0.50 0.22 0.52 0.55 -0.19
MultiArith -0.04 -0.07 -0.20 -0.31 0.82 0.39 0.58 -0.24 0.44 0.18 0.16 0.06
SVAMP 0.23 0.05 -0.13 -0.02 0.47 0.44 -0.19 -0.17 0.69 0.61 0.53 -0.02

4-shot
GSM8K 0.77 0.61 0.12 0.52 0.26 0.37 -0.15 -0.20 0.80 0.58 0.52 0.31
MathQA 0.29 -0.26 -0.46 -0.01 0.40 0.28 -0.02 -0.67 0.18 -0.33 -0.52 0.14
AQUA 0.80 0.77 -0.10 -0.11 -0.08 0.20 0.02 -0.19 -0.31 -0.11 -0.05 -0.43
MultiArith 0.54 0.33 0.42 0.22 0.80 0.23 -0.001 -0.47 0.67 0.51 0.24 -0.44
SVAMP 0.63 0.31 0.22 0.61 0.10 0.07 0.36 -0.17 0.22 -0.03 -0.14 -0.13

Average 0.51 0.37 0.16 0.14 0.33 0.25 0.11 -0.14 0.31 0.29 0.25 -0.10

Table 1: The correlation coefficients between different metrics and model inference accuracy across multiple datasets
and models of few-shot tasks. For each dataset and each model, the largest correlation is bolded, indicating the best
interpretation method.
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4 Experiments388

This section presents a comprehensive evaluation389

of the proposed SalaMAnder framework, demon-390

strating its applicability across various settings.391

Sec 4.1 describes the experimental settings, and392

Sec 4.2 utilizes SalaMAnder in few-shot learning393

scenarios to assess the validity of our explanation394

method and metric. In Sec 4.3, we further evalu-395

ate the reliability of explanation results. Sec 4.4396

present novel insights that not only reinforce the397

effectiveness of our methods but also integrate and398

unify previous research. 399

4.1 Experimental Settings 400

To evaluate the effectiveness of the proposed 401

SalaMA method and the CoSP metric, we con- 402

ducted experiments using three foundational large 403

language models and five representative mathemat- 404

ical datasets. The selected models, LLaMA-2-13B- 405

chat (Touvron et al., 2023), LLaMA-3-8B-Instruct 406

(Grattafiori et al., 2024), and Qwen2.5-7B-Instruct 407

(Team, 2024) were chosen for their fundamental 408

architectures and generalizability, as they are not 409

overly specialized or pre-trained on extensive math- 410

ematical datasets. This ensures that our analysis 411

of CoSP and SalaMA is broadly applicable across 412

different model paradigms. 413

For the datasets, we utilized GSM8K (Ouyang 414

et al., 2022), MathQA (Amini et al., 2019), AQUA 415

(Ling et al., 2017), MultiArith (Wang et al., 2018), 416

and SVAMP (Patel et al., 2021). These datasets 417

were selected for their representativeness in the 418

mathematical question-answering domain, encom- 419

passing a range of difficulties where MathQA and 420

AQUA are approximately equivalent and more chal- 421

lenging than GSM8K, which is in turn more dif- 422

ficult than MultiArith and SVAMP. Specifically, 423
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Datasets Average Correlation

1-shot 2-shot 4-shot

CoSP-0 CoSP-1 SSV NoE CoSP-0 CoSP-1 SSV NoE CoSP-0 CoSP-1 SSV NoE

GSM8K 0.70 0.48 0.24 0.63 0.68 0.36 0.33 0.44 0.61 0.52 0.16 0.21
MathQA 0.22 0.39 0.31 -0.07 -0.01 0.11 0.13 -0.07 0.29 -0.10 -0.33 -0.18
AQUA -0.15 0.30 0.27 -0.46 0.29 0.33 0.27 -0.39 0.14 0.29 -0.04 -0.24
MultiArith 0.71 0.56 0.02 0.42 0.41 0.17 0.18 -0.16 0.64 0.36 0.22 -0.23
SVAMP 0.41 0.33 0.28 -0.18 0.46 0.37 0.07 -0.07 0.32 0.12 0.15 0.10

Table 2: The correlation coefficients averaged among various models in few-shot tasks. For each dataset, the largest
correlation is bolded, indicating the best interpretation method.

GSM8K consists of grade-school level math prob-424

lems, MathQA includes complex multi-step rea-425

soning questions, AQUA focuses on arithmetic426

and algebraic tasks, MultiArith provides multi-step427

arithmetic word problems, and SVAMP introduces428

adversarial variations to traditional arithmetic prob-429

lems. This selection ensures comprehensive cover-430

age of various aspects and complexities inherent in431

mathematical QA tasks.432

4.2 Attribution Validity: CoSP Metric433

Verification in Few-Shot Learning434

To evaluate the practical applicability of the pro-435

posed SalaMA method and the CoSP metric, we436

applied them to few-shot learning scenarios across437

multiple mathematical datasets and foundational438

language models to assess the correlation between439

CoSP and model performance (accuracy), thereby440

validating the effectiveness of our framework.441

We meticulously constructed demonstrations to442

ensure a uniform distribution of mathematical ex-443

pressions. Specifically, for one-shot learning tasks,444

we constructed demonstrations by selecting 35445

question-answer (Q-A) pairs from the training sets446

of the GSM8K, MathQA, and AQUA datasets. Be-447

cause the MultiArith and SVAMP datasets include448

answers composed solely of single mathematical449

expressions, we instead selected 35 Q-A pairs from450

the GSM8K dataset to serve as demonstrations.451

These one-shot demonstrations were evenly dis-452

tributed, with five Q-A pairs each containing be-453

tween one and seven mathematical expressions.454

For 2-shot demonstrations, the total number of455

expressions ranged from 2 to 10, resulting in 14456

unique demonstrations by accounting for multiple457

combinations where applicable (e.g., a total of 6458

expressions could be achieved by combinations459

2+4 or 3+3). 4-shot demonstrations contained 4-460

16 total expressions, with one unique combination461

retained per expression count to minimize computa-462

tion, producing 13 distinct demonstration sets. This 463

methodology ensured that both one-shot and few- 464

shot demonstrations maintained a balanced and 465

uniform distribution of mathematical expressions, 466

thereby isolating the effect of expression quantity 467

on model performance. 468

We then utilize the proposed SalaMA method to 469

few-shot learning to get various metrics: CoSP-0, 470

CoSP-1, SSV (the sum of averaged shapley value, 471

i.e.
∑n

i=1 ϕ̄(i)), NoE(number of expressions, i.e. 472

n). The correlations of these metrics and model 473

inference accuracy across diverse datasets and mod- 474

els in 1, 2, 4-shot scenarios are shown in Tab. 1, 475

and Tab. 2 record the correlations averaged among 476

different models. 477

Observed from Tab. 1, CoSP-0 is the best inter- 478

pretation metric for all models, and the interpreta- 479

tion validity of CoSP-0/CoSP-1 is much better than 480

the other metrics. According to Tab. 2, CoSP-0 481

serves as the best interpretation metric for GSM8K, 482

MultiArith, and SVAMP, while CoSP-1 for AQUA. 483

For MathQA, CoSP-0 serves as the best interpreta- 484

tion metric in 1 or 2-shot learning, while CoSP-1 485

the best in 4-shot learning. 486

4.3 Explanation Reliability: Large-Scale 487

Testing Assessment of CoSP Explanations 488

To further assess the reliability of our CoSP expla- 489

nations, we conducted comprehensive validation 490

experiments using the entire test set of the GSM8K 491

dataset with both the LLaMA 2 and LLaMA 3 492

models. This focused approach ensures generality 493

while maintaining computational feasibility. We 494

selected four demonstrations for each model where 495

the CoSP-0 scores for LLaMA 2 is 173, 121, 280, 496

235, while for LLaMA 3 is 264, 220, 344, 334. 497

The experimental outcomes consistently demon- 498

strated a strong positive correlation between CoSP- 499

0 scores and model accuracy for both LLaMA 2 and 500

LLaMA 3. Specifically, for LLaMA 2, the demon- 501
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Figure 3: Accuracy of demonstrations for low and high CoSP expressions after four types of modifications in test
set across different models and demos: (a) LLaMA2-demo1, (b) LLaMA3-demo1, (c) LLaMA2-demo2, and (d)
LLaMA3-demo2. The observed results indicate that the accuracy curve for low CoSP expressions encompasses
that for high CoSP expressions in almost all scenarios, highlighting that alterations on low CoSP expressions yield
overall better performance outcomes compared to alterations on high CoSP expressions.

stration with a CoSP-0 score of 280 achieved the502

highest accuracy, followed by demonstrations with503

scores of 235, 173, and 121, in descending order of504

performance. Similarly, for LLaMA 3, the demon-505

stration with a CoSP-0 score of 344 yielded the506

highest accuracy, followed by those with scores of507

334, 264, and 220. This consistent pattern across508

both models indicates that demonstrations with509

higher CoSP-0 scores significantly enhance the rea-510

soning capabilities of the models, while those with511

lower scores contribute less effectively.512

4.4 Analytical Extensibility: Discovery of513

Novel Insights in CoT514

Building upon our previous findings that high515

CoSP expressions contribute maximally, while low516

ones contributes minimally to model reasoning, we517

sought to uncover novel insights into the dynamics518

of CoT reasoning processes. Specifically, we ap-519

plied four distinct altering to the expression with520

highest and lowest CoSP to assess their impact on521

model performance. 1) Remove the expression.522

2) Replaced the expressions with non-informative523

placeholders, i.e. ’...’. 3) Introduced calculation er-524

rors, for example, converting from ’2 + 3 = 5’ to ’2525

+ 3 = 6’. 4) Introduced process errors, for example,526

converting from ’2 + 3 = 5’ to ’4 + 7 = 11’. And527

we selected two demononstrations and conducted528

these experiments on GSM8K datasets, with both529

the LLaMA 2 and LLaMA 3 models. The original530

demonstration is presented in Appendix B, where531

different expressions of CoSP in different colors.532

Figures 3 depict the effect of these alterations533

on the accuracy of the test set for low and high534

CoSP expressions across different demonstrations535

and models. It was consistently observed across536

almost all experiments that the performance curves537

for low CoSP expressions encapsulated those for538

high CoSP expressions. 539

The results suggest that modifications to low 540

CoSP expressions lead to better performance out- 541

comes compared to modifications to high CoSP 542

expressions. This finding further corroborates our 543

initial hypothesis: low CoSP expressions exert min- 544

imal influence on model reasoning, whereas high 545

ones significantly contribute. 546

Additionally, our experimental findings reveal 547

several intriguing phenomena. Notably, the re- 548

moval of certain expressions, the substitution of ex- 549

pressions with non-informative filler tokens (such 550

as ’...’), and the introduction of errors in either 551

the result or process of expressions do not nec- 552

essarily lead to significant degradation in model 553

performance. This outcome resonates with prior 554

studies(Pfau et al., 2024; Wang et al., 2023). 555

5 Conclusion 556

In this paper, we propose SalaMAnder, a novel 557

framework for understanding and optimizing 558

Chain-of-Thought (CoT) reasoning in large lan- 559

guage models (LLMs). By introducing a theoret- 560

ically grounded methodology based on Shapley 561

value attribution and developing the CoSP (Car- 562

dinality of Shapley Positives) metric, we have 563

established a mathematically rigorous approach 564

to quantifying component-level contributions in 565

CoT reasoning. Extensive validation across vari- 566

ous LLM models and mathematical benchmarks 567

demonstrates that the CoSP metric within our Sala- 568

MAnder framework strongly and monotonically 569

correlates with model performance. This correla- 570

tion not only theoretically explains the empirical 571

success of existing CoT but also provides rigor- 572

ous guidelines for optimizing prompt construction. 573

Furthermore, it can be utilized to discover novel 574

insights resonating with prior studies 575
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Limitation576

The limitation of this paper is that we do not have577

enough time to conduct all complete experiments578

and do case studies.579
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A The proof of Theorems815

We have three assumptions necessary for the proof:816

1. The positive contribution of any expression817

has a significant lower bound:818

∃ δ+ > 0, s.t.819

µi > δ+ · I(µi > 0)820

2. The non-positive contribution of any expres-821

sion has a lower bound:822

∃ δ− < 0, s.t.823

µi > δ−I(µi ⩽ 0) = δ− · (1− I(µi > 0))824

3. The contributions of different expressions are825

mutually independent when applied to differ-826

ent problems:827

Cov(ϕ(k)(i), ϕ(l)(j)) = 0828

(∀ i ̸= j, 1 ⩽ k, l ⩽ m, k ̸= l)829

Here is the proof of Theo. 1:830

Proof 1 As illustrated in Sec. 3.3:831

ϕ(k)(i) ∼ N (µi, σ
2
i )832

ϕ̄(i) =
1

m

m∑
k=1

ϕ(k)(i)
m→∞−→ µi833

To simplify the expression, we define a positive834

contribution indicator Xi = I(ϕ̄(i) > 0). Thus:835

CoSP =

n∑
i=1

Xi − λ

n∑
i=1

(1−Xi)836

= (1 + λ)

n∑
i=1

Xi − nλ (7)837

And we define the model performance Perf by838

summing the expected shapley value of all expres-839

sions:840

Perf =
n∑

i=1

E[ϕ(i)] =
n∑

i=1

µi (8)841

Thus we can further derive the expression of Perf : 842

Perf =
∑
i∈S+

µi +
∑
i/∈S+

µi >
∑
i∈S+

δ+ +
∑
i/∈S+

δ− 843

=

n∑
i=1

δ+I(µi > 0) +

n∑
i=1

δ−I(µi ⩽ 0) 844

=

n∑
i=1

δ+I(µi > 0) +

n∑
i=1

δ−(1− I(µi > 0)) 845

= nδ− +

n∑
i=1

(δ+ − δ−) · I(µi > 0) 846

= nδ− + (δ+ − δ−) ·
CoSP + nλ

1 + λ
(9) 847

indicating a linear functional relationship between 848

a lower bound of model performance and CoSP . 849

And the coveriance between µi and Xi is: 850

Cov(µi, Xi) = E[µiXi]− E[µi]E[Xi] 851

where µi > δ+Xi + δ−(1−Xi) based on the first 852

two assumptions. 853

We define a residual item ϵi > 0, s.t. : 854

µi = δ+Xi + δ−(1−Xi) + ϵi 855

Then 856

E[µiXi] = δ+E[X2
i ] + δ−E[(1−Xi)Xi] + E[ϵiXi] 857

= δ+ + E[ϵiXi] 858

The second equation is because Xi(1−Xi) = 0. 859

And 860

E[µi] = δ+E[Xi] + δ−E[1−Xi] + E[ϵi] 861

Thus 862

Cov(µi, Xi) =δ+E[X2
i ] + E[ϵiXi]− δ+E2[Xi]− 863

δ−E[Xi]E[1−Xi] + E[Xi]E[ϵi] 864

Since E[Xi] = E[X2
i ], and E[1−Xi] = 1−E[Xi], 865

then 866

E[Xi]E[1−Xi] = E[Xi](1− E[Xi]) 867

= E[Xi]− E2[Xi] 868

= E[X2
i ]− E2[Xi] 869

= Var(Xi) 870

Then 871

Cov(µi, Xi) = (δ+ − δ−)Var(Xi) + Cov(ϵi, Xi)
(10)

872
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Based on the third assumption, we have:873

Cov(Perf, CoSP ) =
n∑

i=1

n∑
j=1

Cov(µi, (1 + λ)Xj − λ)874

=

n∑
i=1

Cov(µi, (1 + λ)Xi − λ)875

= (1 + λ)
n∑

i=1

Cov(µi, Xi)876

= (1 + λ)

[
(δ+ − δ−)

n∑
i=1

Var(Xi) +
n∑

i=1

Cov(ϵi, Xi)

]
877

And since the residual ϵi has little relevance with878

Xi, the sum of the covariance tends to 0. Thus879

Cov(Perf, CoSP ) = (1 + λ)(δ+ − δ−)

n∑
i=1

Var(Xi)880

> 0 (11)881

Specifically, we define CoSP-0 and CoSP-1, with882

λ equals to 0 and 1, respectively. Then883

Cov(Perf, CoSP -0) = (δ+ − δ−)

n∑
i=1

Var(Xi)

(12)

884

Cov(Perf, CoSP -1) = 2(δ+ − δ−)
n∑

i=1

Var(Xi)

(13)

885

Thus CoSP has a positive correlation with886

model performance.887

□888

Here is the proof of Theo. 2:889

Proof 2 Since Xi = I(ϕ̄(i) > 0), then Xi follows890

a Bernoulli distribution:891

pi = P (Xi = 1) = Φ(
µi

σi
) (14)892

where Φ(·) is the standard normal distribution cu-893

mulative function.894

Thus the expected value of CoSP with n expres-895

sions is:896

E[CoSPn] = (1 + λ)
n∑

i=1

Φ(
µi

σi
)− nλ897

= (1 + λ)
n∑

i=1

pi − nλ (15)898

Thus the expected value of CoSP with n + 1 899

expressions is: 900

E[CoSPn+1] = (1 + λ)
n+1∑
i=1

pi − (n+ 1)λ 901

= E[CoSPn] + pn+1 − λ (16) 902

Therefore, CoSP-0 increases monotonically with 903

the number of expressions n, while CoSP-1 de- 904

creases monotonically with n. 905

□ 906
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B Selected Demonstrations907

This section presents the selected demon-908

strations in Sec 4.4. Expressions with909

a light blue background have the lowest CoSP,910

those with an orange background have the911

highest CoSP, and the remaining expressions are912

shown with a light green background .913

demo1
Question:
Sharon wants to get kitchen supplies.
She admired Angela’s kitchen supplies
which consist of: 20 pots, 6 more
than three times as many plates as
the pots, and half as many cutlery as
the plates. Sharon wants to buy: half
as many pots as Angela, 20 less than
three times as many plates as Angela,
and twice as much cutlery as Angela.
What is the total number of kitchen
supplies Sharon wants to buy?
Answer:
Angela has 6+3*20=«6+3*20=66»66
plates. Angela has
1/2*66=«1/2*66=33»33
cutlery. Sharon wants to
buy 1/2*20=«1/2*20=10»10
pots. Sharon wants to buy
3*66-20=«3*66-20=178»178 plates.
Sharon wants to buy 2*33=«2*33=66»66
cutlery. Sharon wants to buy a total
of 10+178+66=«10+178+66=254»254
kitchen supplies.

914

demo2
Question:
Brittany, Alex, and Jamy all share
600 marbles divided between them in
the ratio 3:5:7. If Brittany gives
Alex half of her marbles, what’s the
total number of marbles that Alex
has?
Answer:
The total ratio representing
the number of marbles is
3+5 +7 = «3+5+7=15»15 . From the
ratio, the fraction representing
the number of marbles that Brittany
has is 3/15 , which is equal

915

to 3/15*600 = «3/15*600=120»120
marbles.Alex has
5/15*600 = «5/15*600=200»200
marbles.If Brittany gives half
of her marbles to Alex, Alex receives
1/2*120 = 60 marbles.After receiving
60 marbles from Brittany, Alex has
200+60 = «200+60=260»260 marbles.

916
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