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Bootstrap Prompt Learning with Feature Adaptation
for Vision-Language Efficient Tuning

Anonymous Authors1

Abstract
As popular alternatives to fine-tune vision-
language foundation models such as CLIP,
prompt learning and adapter tuning resort to pre-
adjustment in the input space and post-adjustment
on the pretrained weight matrices to optimize
the task-specific objective, respectively. How-
ever, there still lacks a method to jointly exploit
their benefits due to potential conflicts in optimiza-
tion directions. In this paper, we propose a novel
framework named adaPter bootstrApped prompt
contrastive Tuning (PAT) to address this problem.
Specifically, we bootstrap prompt learning with
adapters and achieves pre-post alignment to avoid
mismatch between the optimization directions of
prompter learning and adapter tuning. Further-
more, we propose a tolerance regularization that
equally pushes away all negative samples and im-
proves generalization by introducing additional
categories of unlabeled data to avoid overfitting.
To our best knowledge, this is the first successful
attempt to simultaneously exploit the advantages
of prompt learning and adapter tuning. Exten-
sive evaluations demonstrate that PAT achieves
state-of-the-art performance in various recogni-
tion tasks on three prevailing benchmarks.

1. Introduction
Vision-language models pretrained on large-scale datasets
of image-text pairs exhibit strong generalization capabilities
across various downstream tasks (Alayrac et al., 2022; Rad-
ford et al., 2021; Jia et al., 2021). However, pretraining these
models requires massive volume of image-text pairs and
substantial computational resources. To address these chal-
lenges, parameter-efficient fine-tuning (PEFT)(Han et al.,
2024) has been widely studied in recent literature. Com-
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pared to full fine-tuning, PEFT achieves competitive or su-
perior performance by tuning a minimal number of trainable
parameters. Generally, existing methods for PEFT can be
categorized into three types, including prompt learning(Jia
et al., 2022), adapters(Chen et al., 2022), and reparameteri-
zation(Hu et al., 2021).

Prompt learning introduces trainable embeddings into the
input space to guides pretrained models to adapt to down-
stream tasks. In the context of vision-language adaptation,
prompt learning methods such as CoOp (Zhou et al., 2022b)
combine classification labels with a classification template
and add trainable text embeddings, thereby converting the
text encoder into a classifier. However, early methods for
prompt learning in VLMs are limited in the input space and
restricted in representation capacity. Recent efforts facili-
tate prompt learning with adapter-based feature adaptation.
For example, in addition to trainable prompt embeddings,
TCP (Yao et al., 2024) introduces textual knowledge em-
bedding (TKE) that serves as a specialized adapter to learn
class-level features and transform them into prompts. DePT
(Zhang et al., 2024) incorporates a channel adjusted trans-
fer (CAT) head into prompt learning, which resembles an
adapter in implementation. However, existing methods for
vision-languages efficient tuning suffer from two problems.

• Mismatch between prompt learning and adapter
tuning. Existing methods simply introduce adapters to
enhance the representation capacity of prompt learning,
and neglect the mismatch between optimization direc-
tions of adapters with trainable parameters inserted
alongside parameter matrices and prompts with train-
able parameters inserted into the input space.

• Bias by exclusive cross entropy loss. We reveal that
existing methods rely heavily on exclusive cross en-
tropy loss. They select the class with the highest simi-
larity between fine-tuned visual and textual represen-
tations as final prediction and undermine the general-
ization to unseen categories. Table 1 shows that the
forced-choice constraint causes incorrect bias toward
the categories given in the few-shot tuning and results
in a loss of information about unseen categories.

To address these problems, in this paper, we propose a novel
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vision language efficient tuning framework, namely adaPter
bootstrAp prompt contrastive Tuning (PAT), which for the
first time simultaneously exploit the advantages of prompt
learning and adapter tuning. PAT incorporates two novel
modules, i.e., pre-post alignment to address the mismatch
between pre-adjustment and post-adjustment and tolerance
regularization to mitigate the bias caused by exclusive cross-
entropy loss. Our contributions are summarized as below.

• We develop the adaPter bootstrAp prompt contrastive
Tuning (PAT) framework to simultaneously improve
the fitting capability and generalization performance
of prompt learning in downstream tasks.

• We bootstrap the pre-adjustment with prompt learning
by integrating post-adjustment with adapters and intro-
duce a pre-post alignment module to avoid mismatch
between the optimization directions of prompt learning
and adapter tuning.

• We propose a tolerance regularization, which equally
pushes away all negative samples and improves gen-
eralization by introducing additional categories of un-
labeled data to prevent the model from over-fitting on
the training categories.

We conduct extensive evaluations of PAT’s fitting and gen-
eralization capabilities across over ten datasets and perform
detailed ablation studies, demonstrating through experimen-
tal results that PAT achieves state-of-the-art performance.
Specifically, our method improves overall performance in
Base-to-New by 0.9% compared to the previous state-of-
the-art (79.5% vs 80.4%) and achieves a 1.5% improvement
in the few-shot experiment (76.7% vs 78.2%).

2. Related Work
2.1. Vision Language Models

Vision-language models (VLMs) learn multi-modal repre-
sentations by pretraining on large-scale image-text datasets,
such as CLIP(Radford et al., 2021) and ALIGN(Jia et al.,
2021), with 400 million and 1 billion pairs, respectively.
Using contrastive loss, these models align paired features
while distinguishing unpaired ones, enabling strong open-
vocabulary generalization. Recent advancements enhance
their descriptive and discriminative capabilities through
stronger encoders(Li et al., 2023; Vaswani, 2017), deeper
modality fusion, larger datasets, and techniques like Masked
Language Modeling (MLM) and image masking(Kim et al.,
2021; Lu et al., 2019). CLIP, a key framework with excep-
tional generalization, has inspired numerous CoOp-based
prompt tuning approaches. In this work, we propose a novel
prompt learning framework to further adapt pretrained CLIP
for generalization and few-shot learning.

2.2. PEFT for Vision Language Models

Prompt learning, as a parameter-efficient fine-tuning
method, aims to transfer pretrained models to downstream
tasks while keeping most parameters frozen. Classical
prompt learning methods achieve this by adding a small
number of trainable embeddings into the input space of
pretrained models without altering the pretrained weights,
thereby guiding the model’s outputs to adapt to downstream
tasks. Due to its efficiency in terms of trainable parame-
ters, developing more powerful prompt learning methods
for adapting multimodal pretrained models like CLIP to
visual or vision-text downstream tasks has garnered signifi-
cant interest from both academia and industry. For example,
Context Optimization (CoOp) (Zhou et al., 2022b) replaces
handcrafted prompts with learnable embeddings in the input
space of CLIP’s text encoder to enable few-shot adaptation.
Recently, Textual-based Class-aware Prompt (TCP) (Yao
et al., 2024) proposed another paradigm, focusing on class-
aware prompt tuning and try to combine adapter and prompt
learning. To mitigate potential knowledge forgetting dur-
ing fine-tuning, Knowledge-Guided Context Optimization
(KgCoOp) (Yao et al., 2023) applies L2 norm constraints
to the text encoder, thus enhancing generalization. All the
aforementioned methods focus on single-modal encoder
fine-tuning and cannot flexibly adjust the representations of
both modalities based on downstream tasks. Thus Multi-
modal Prompt Learning (MaPLe) (Khattak et al., 2023a)
improves the consistency between visual and language rep-
resentations using trainable prompts and a vision-language
coupling function, thereby enhancing the generalization of
prompt learning.

Unlike these methods, we observe that while both are
parameter-efficient fine-tuning approaches, adapter-based
methods differ from prompt learning in their focus. Instead
of modifying the input space of pretrained models as prompt
learning does, adapter-based methods insert a small number
of trainable parameters alongside the pretrained modules.
This suggests that the two approaches may employ different
optimization strategies to acquire knowledge beneficial for
downstream tasks. In this paper, we propose a novel ap-
proach that leverages prompt learning as a pre-adjustment,
followed by a post-adjustment using adapter methods. By
aligning the representations learned from both approaches,
we demonstrate that the knowledge acquired through adapter
methods can be utilized to further bootstrap the effectiveness
of prompt learning.

3. Methodology
3.1. Revisiting Vision-Language Model

We consider the pre-trained vision-language model CLIP
that comprises a text encoder g and a vision encoder f with
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respective pre-trained parameters θg and θf . We denote
θCLIP = {θg, θf} as the collection these parameters.

Vision Encoder: An input image X ∈ RC×H×W is first
divided into M patches that are projected into M patch
tokens t1, · · · , tM . The input X̂={tcls, t1, · · · , tM} to the
vision encoder f is then formed by appending a learnable
class token tcls to the M patch tokens. Latent visual feature
representation f̂=f(X̂, θf )∈Rd is extracted from X̂ with
multiple transformer blocks.

Text Encoder: The class label y corresponding to the image
is wrapped within a text template (e.g., ‘a photo of a class
label’) to form Ŷ = {tSOS , t

′
1, · · · , t′L, ck, tEOS}, where

{t′l}Ll=1 and ck are word embeddings for the text template
and class label of the kth class, respectively, and tSOS and
tEOS are learnable start and end token embeddings. The
text encoder g encodes Ŷ via multiple transformer blocks
to obtain the latent textual feature ĝ = g(Ŷ , θg) ∈ Rd.

Zero-shot Classification for Vision-Language Model: For
zero-shot classification, textual prompts are crafted with the
text template and class labels y ∈ {1, · · · , C} for C classes.
The prediction ŷ given the image feature f̂ is calculated by
cosine similarity with a temperature parameter τ .

p(ŷ|f̂) = exp(sim(f̂ , ĝŷ)/τ∑i=1
C exp(sum(f̂ , ĝi))

. (1)

Limitations of Different Tuning Methods: Prompt learn-
ing inserts trainable embeddings into the model’s input
space without modifying its internal parameters, which
can lead to instability during training. Furthermore, since
these embeddings merely guide the model’s output, their
effectiveness in downstream tasks is highly dependent on
the pretrained model’s inherent capabilities. Consequently,
prompt learning performs poorly in scenarios where there is
a significant distribution shift between the pretraining data
and downstream tasks or when handling complex tasks. In
contrast, adapter-based methods introduce trainable mod-
ules alongside the model’s parameter matrices, enabling
stronger representational capacity. They are more robust
to distribution shifts and complex datasets. However, these
methods often suffer from slow convergence; for example,
TCP (Yao et al., 2024) requires 50 epochs to reach its re-
ported performance, whereas VPT (Jia et al., 2022) and
MaPLe (Khattak et al., 2023a) achieve slightly poor results
in only 5 epochs. Therefore, an important research question
is how to efficiently integrate adapter-based methods with
prompt learning to leverage their respective advantages.

3.2. Proposed Method

Existing approaches like TCP (Yao et al., 2024) and DePT
(Zhang et al., 2024), while pioneering the integration of
adapters into prompt learning frameworks, exhibit two crit-

Table 1. In the Base-to-New experiment, performance comparison
between classification experiments using New classes labels and
All classes labels on the New classes dataset. It is observed that
using All classes labels results in a significant drop in performance.
Datasets Sets CoOp CoCoOp MaPLe PromptSRC

SUN397 New 68.3 76.9 78.7 79.0
New(All label) 57.9 67.4 69.0 68.6

EuroSAT New 53.0 60.0 73.2 68.4
New(All label) 41.7 49.4 46.3 54.6

UCF101 New 67.4 73.5 78.7 78.3
New(All label) 52.3 65.6 71.3 71.6

ical limitations: Their concurrent optimization of distinct
parameter spaces (adapter modules vs. prompt embeddings)
may induce conflicting optimization trajectories due to di-
vergent gradient propagation patterns; They inadequately
exploit the visual-semantic representational capacity inher-
ent in CLIP’s pretrained text encoder for classification tasks.
In this section, PAT introduces a pre-post adjustment that
sequentially aligns optimization directions through con-
strained prompt tuning, combined with tolerance regula-
tization to reinforce the model’s discriminative and general-
ization capability, ultimately achieving more robust classifi-
cation performance. Figure 1 depicts the overall framework
architecture, we use prompt learning as a pre-adjustment
to fine-tune the pre-trained VLM, followed by adapter tun-
ing as a post-adjustment, mathematically, this process is
expressed as

f̂α = f(X̂, {θf , αf}) , ĝα = g(Ŷ , {θg, αg}) (2)

f̂β = f({βf , X̂}, θf ) , ĝβ = g({βg, Ŷ }, θg) (3)

f̂ = f̂α + f̂β , ĝ = ĝα + ĝβ (4)

Where αg and αf denote the learnable parameters of adapter
inserted alongside the model for the text branch and the
visual branch, respectively. βg and βf represent the prompt
learnable parameters inserted into the input embeddings for
the text branch and the visual branch, respectively. f̂α and
ĝα represent the fine-tuned representations obtained after
applying prompt learning (pre-adjustment) of text branch
and visual branch. Similarly, f̂β and ĝβ indicate the fine-
tuned representations obtained after applying adapter tuning
(post-adjustment). the final fine-tuned representations f̂ and
ĝ are obtained by integrating both approaches. And Figure 2
illustrates the tolerance regularization mechanism.

3.2.1. PRE-POST ALIGNMENT

Considering that x is the input image, z is the latent feature,
α and β is the parameterized adapter and prompt respec-
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Figure 1. Overall Structure of PAT. In the figure, the blue blocks (excluding the loss function) represent the visual branch of the framework,
while the orange blocks correspond to the textual branch of the model. The gray lines denote zeroshot inference, the pink lines illustrate
the pre-adjustment leveraging prompt learning, and the blue lines depict the post-adjustment employing feature adaptation. Apart from
the final cross-entropy loss function, the representations obtained from the pre- and post-adaptation processes of both modalities are
constrained and aligned using MSE. Subsequently, the two representations are integrated through equal-weighted summation. The
resulting logits and integrated representations are further aligned with zeroshot features using KL divergence and MAE, respectively.
Additionally, Tolerance Regularization is computed between the final visual representation and the zeroshot textual representation.

Figure 2. A schematic diagram of contrastive learning based on
the tolerance regularization loss. For each image-text pair, if the
pair is positive, the resulting visual representation and textual
representation are pull together; otherwise, the two representations
are pushed away apart.

tively. Then we have

pα(y|x) =
∫

pα(y|z)pα(z|x)dz = Ez[pα(y|z)], (5)

pβ(y|x) =
∫

pβ(y|z)pβ(z|x)dz = Ez[pβ(y|z)]. (6)

Assume pα(z|x) and pβ(z|x) obey Gaussian distribution

pα(z|x) = N
(
z;µα(x), σ

2
αI

)
, (7)

pβ(z|x) = N
(
z;µβ(x), σ

2
βI

)
. (8)

pα(y|z) and pβ(y|z) are the determinant function i.e., the

linear projection layer

pα(y|z) = δ(y −Wαz), pβ(y|z) = δ(y −Wβz) (9)

where δ(·) is the Dirac delta function and Wα,Wβ is the
weight matrix. Then the expectation can be simplified as

pα(y|x) = pα(z = µα(x)|x), pβ(y|x) = pβ(z = µβ(x)|x)
(10)

We aim to minimize the KL divergence between the predic-
tion distribution as

DKL(pα(y|x)∥pβ(y|x))=Ey∼pα(y|x)

[
log

pα(y|x)
pβ(y|x)

]
. (11)

When Then we bring Eq. 10 into the above objective. Con-
sidering that pα(z|x) and pβ(z|x) obey Gaussian distribu-
tion, then the KL divergence has the analytical form:

DKL(pα∥pβ)=
1

2

[
log

σ2
β

σ2
α

+
σ2
α+(µα−µβ)

2

σ2
β

−1

]
. (12)

To simplify the computation, we assume the adapter α and
the prompt β have the same variance as

σ2
α = σ2

β = σ2 (13)

Then the KL divergence turn into

DKL(pα∥pβ) =
1

2σ2
∥µα − µβ∥2 (14)
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Therefore, the pre-post alignment loss for each modal
branch model is formalized using MSE.

L = E(f̂α − f̂β)
2 + E(ĝα − ĝβ)

2 (15)

3.2.2. TOLERANCE REGULARIZATION

For each sample xi, the corresponding visual feature is fi,
and for all the textual description, the textual embedding
is {tk}Kk=1, where K is the number of categories. We then
calculate the logits after softmax as

ŷ
(k)
i =

ecfitk+b∑K
j=1 e

cfitj+b
. (16)

where c is the constant and b is the bias. For one-hot label
y
(k)
i ∈ {0, 1}, the cross-entropy loss is defined as

H(ŷ, y) = − 1

|B|

|B|∑
i=1

K∑
k=1

y
(k)
i log ŷ

(k)
i . (17)

In conventional vision language efficient tuning, the pre-
dicted textual description is forced to match one of the given
label, making the model over-fitted on the training cate-
gories, thereby undermining the generalization to unseen
classes. To avoid over-fitting on training datasets, we pro-
pose to use binary contrastive loss, i.e., the sigmoid loss, as
the regularization in the objective function.

L=− 1

|B|

|B|∑
i=1

|B|∑
j=1

log
1

1 + exp(zij(−txi · yj + b))
, (18)

where zij returns 1 when the i-th visual representation xi

matches the j-th textual representation yj and −1 otherwise.
Different from (Zhai et al., 2023), we fix the parameters b
and t to −2 and 2, since the model possesses strong repre-
sentation capability during fine-tuning.

Proposition 1. The sigmoid loss function degenerates to
the class-irrelevant binary cross entropy loss function, when
considering only positive samples.

Proof. Please refer to Appendix A.

This proposition demonstrates that our proposed toler-
ance regularization yields an undifferentiated binary cross-
entropy (BCE) loss. Furthermore, when incorporating im-
ages from unrelated categories without label information
and randomly sampled mismatched text, this undifferenti-
ated constraint effectively prevents the model from incor-
rectly assigning these samples to inappropriate categories.
By avoiding the enforcement of erroneous category selec-
tion, the regularization enhances the model’s robustness and
generalization capability

Figure 2 shows that, during fine-tuning, the training data
is divided into two categories: images within the current
category space paired with their corresponding labels, and
noise images outside the current category space paired with
randomly sampled labels. The tolerance regularization pro-
cesses each image-text pair independently.

For images within the category space, it brings their em-
beddings closer to the corresponding textual embeddings.
For noise images, the similarity with the embeddings of
all existing category texts will be pushed farther. During
this process, we progressively penalize the distance between
unknown samples and known text embeddings, thereby en-
hancing their generalization to unseen categories. Subse-
quent experimental results demonstrate that the application
of tolerance regularization significantly improves the gener-
alization capability of prompt learning.

3.2.3. FINAL OBJECTIVE FUNCTION

Mathematically, based on the preceding content, the final
objective function of PAT can be expressed as

L =− 0.01 · 1

|B|

|B|∑
i=1

|B|∑
j=1

log
1

1 + exp(zij(2ĝi · f̂j,zs − 2))

+ E[(f̂α − f̂β)
2] + E[(ĝα − ĝβ)

2] + Lce + Lpre−tune

(19)

Where f̂zs represents the text representation obtained
through zero-shot CLIP. In addition to the previously pro-
posed pre-post align and pos-neg align, the objective func-
tion also includes a cross-entropy loss Lce for guiding clas-
sification and an alignment loss Lpre−tune to constrain
the pretrained and fine-tuned model, this type of align-
ment loss is widely adopted in other prompt learning ap-
proaches(Khattak et al., 2023b; Yao et al., 2023; 2024).

4. Experiments
4.1. Benchmark Settings

Datasets: Following (Khattak et al., 2023b) and (Yao et al.,
2024), we conduct the Base-to-New generalization, few-shot
learning, and cross-dataset generalization on 11 datasets and
contains a wide range of recognition tasks. The datasets in-
clude ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei
et al., 2004) for generic objects, OxfordPets (Parkhi et al.,
2012), StanfordCars (Krause et al., 2013), Flowers102 (Nils-
back & Zisserman, 2008), Food101 (Bossard et al., 2014),
and FGVC-Aircraft (Maji et al., 2013) for fine-grained clas-
sification, SUN397 (Xiao et al., 2010) for scene recogini-
tion dataset, UCF101 (Soomro, 2012) for action recognition,
DTD (Cimpoi et al., 2014) for texture classification, and the
EuroSAT (Helber et al., 2019) dataset of satellite images.

Implementation Details: We utilize a pretrained CLIP with

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

Table 2. Performance comparison across different methods on Base-to-New Benchmark. PAT achieved state-of-the-art performance across
Base, New, and H, with performance improvements of 1.5%, 0.7%, and 0.9%, respectively.
Datasets Sets CoOp CoCoOp ProGrad ProDA KgCoOp RPO PLOT LFA MaPLe DePT PromptSRC TCP PAT

(ICCV22) (CVPR22) (ICCV23) (CVPR22) (ICCV23) (ICCV23) (ICLR23) (ICCV23) (CVPR23) (CVPR24) (ICCV23) (CVPR24)

Average
Base 82.4 80.5 82.5 81.6 80.7 81.1 84.0 83.6 82.3 83.6 84.1 84.1 85.6
New 68.0 71.7 70.8 72.3 73.6 75.0 71.7 74.6 75.1 75.0 75.0 75.4 76.1

H 74.5 75.8 76.2 76.7 77.6 77.8 77.4 78.8 78.5 79.1 79.3 79.5 80.4

ImageNet
Base 76.5 76.0 77.0 75.4 75.8 76.6 77.3 76.9 76.7 77.0 77.8 77.3 78.0
New 66.3 70.4 66.7 70.2 70.0 71.6 69.9 69.4 70.5 70.1 70.7 69.9 70.5

H 71.0 73.1 71.5 72.7 72.8 74.0 73.4 72.9 73.4 74.1 73.4 73.4 74.1

Caltech101
Base 97.8 98.0 98.0 98.3 97.7 98.0 98.5 98.4 97.7 98.3 98.1 98.2 98.8
New 93.3 93.8 93.9 93.2 94.4 94.4 92.8 93.9 94.4 94.6 93.9 94.7 94.1

H 95.5 95.8 95.9 95.7 96.0 96.0 95.6 96.1 96.0 96.4 96.0 96.0 96.4

OxfordPets
Base 94.5 95.2 95.1 95.4 94.7 94.6 94.5 95.1 95.4 94.3 95.5 94.7 95.8
New 96.0 97.7 97.6 97.8 97.8 97.5 96.8 96.2 97.8 97.2 97.4 97.2 97.4

H 95.2 96.4 96.3 96.6 96.2 96.1 95.7 95.7 96.6 95.8 96.4 95.9 96.6

Cars
Base 75.7 70.5 77.7 74.7 71.8 73.9 79.1 76.3 72.9 79.1 78.4 80.8 81.5
New 67.5 73.6 68.6 71.2 75.0 75.5 74.8 74.9 74.0 75.5 74.7 74.1 73.5

H 71.4 72.0 72.9 72.9 73.4 74.7 76.9 75.6 73.5 77.3 75.5 77.3 77.3

Flowers
Base 97.3 94.9 95.5 97.7 95.0 94.1 97.9 97.3 95.9 98.0 97.9 97.7 98.2
New 67.1 71.8 71.9 68.7 74.7 76.7 73.5 75.4 72.5 76.4 76.8 75.6 77.3

H 79.4 81.7 82.0 80.7 83.7 84.5 84.0 85.0 82.6 85.8 86.1 85.2 86.5

Food101
Base 89.4 90.7 90.4 90.3 90.5 90.3 89.8 90.5 90.7 90.5 90.6 90.6 90.5
New 88.8 91.3 89.6 88.6 91.7 90.8 91.4 91.5 92.1 91.6 91.5 91.4 91.2

H 89.1 91.0 90.0 89.4 91.1 90.6 90.6 91.0 91.4 91.1 91.1 91.0 90.8

Aircraft
Base 39.7 33.4 40.5 36.9 36.2 37.3 42.1 41.5 37.4 43.2 42.3 42.0 46.2
New 31.2 23.7 27.6 34.1 33.6 34.2 33.7 32.3 35.6 34.8 37.0 34.4 37.4

H 35.0 27.7 32.8 35.5 34.8 35.7 37.5 36.3 36.5 38.6 39.5 37.8 41.3

SUN397
Base 80.9 79.7 81.3 78.7 80.3 80.6 82.2 82.1 80.8 82.3 82.8 82.6 82.9
New 68.3 76.9 74.2 76.9 76.5 77.8 73.6 77.2 78.7 77.8 79.0 78.2 78.8

H 74.1 78.3 77.6 77.8 78.4 79.2 77.7 79.6 79.8 80.0 80.9 80.4 80.8

DTD
Base 80.0 77.0 77.4 80.7 77.6 76.7 82.0 81.3 80.4 82.2 82.6 82.8 85.3
New 48.6 56.0 52.4 56.5 55.0 62.1 43.8 60.6 59.2 59.1 57.5 58.1 63.5

H 60.5 64.9 62.5 66.4 64.4 68.6 57.1 69.5 68.2 68.8 67.8 68.3 72.8

EuroSAT
Base 90.1 87.5 90.1 83.9 85.6 86.6 93.7 93.4 94.1 89.0 92.4 91.6 94.8
New 53.0 60.0 60.9 66.0 64.3 69.0 62.7 71.2 73.2 71.1 68.4 74.7 74.4

H 66.7 71.2 72.7 73.9 73.5 76.8 75.1 80.8 82.3 79.0 78.6 82.3 83.4

UCF101
Base 84.5 82.3 84.3 85.2 82.9 83.7 86.6 87.0 83.0 85.8 86.9 87.1 89.2
New 67.4 73.5 74.9 72.0 76.7 75.4 75.9 77.5 78.7 77.2 78.3 80.8 79.3

H 75.0 77.7 79.4 78.0 79.7 79.3 80.9 82.0 80.8 81.3 82.4 83.8 84.0

backbone of ViT-B/16. We repeat all the experiments for
3 times and report the average results. The prompts are
randomly initialized and trained for 20 epochs under all
the settings. The length of prompts is set to 4. We adopt
AdapterFormer (Chen et al., 2022) for post-adjustment of
the text encoder and Convpass (Jie et al., 2024) for the vision
encoder. For both modalities, the adapters are applied in the
multi-head attention layer and the linear layer with a scaling
factor of 0.1 and a hidden dimension of 16. For cross-dataset
evaluation, we train the source model on all classes of Ima-
geNet with 16 shots settings using SGD optimizer with the
learning rate of 3.5e-3 and the batch size of 4. For feature
ensembling, we add both feature from pre-adjustment and
post-adjustment with equal weight. All experiments are
conducted on RTX 2080Ti except for ImageNet on RTX
4090 and NVIDIA A100.

Baselines: We adopt most recent state-of-the-art methods
without using the large language model as baselines, in-

cluding CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al.,
2022a), ProGrad (Zhu et al., 2023), ProDA (Lu et al., 2022),
KgCoOp (Yao et al., 2023), PromptSRC (Khattak et al.,
2023b), MaPLe (Khattak et al., 2023a), LFA (Ouali et al.,
2023), DePT (Zhang et al., 2024), PLOT (Chen et al., 2023),
TaskRes (Yu et al., 2023), RPO (Lee et al., 2023), VPT (Jia
et al., 2022), TIP-Adapter-F (Zhang et al., 2022), and TCP
(Yao et al., 2024).

4.2. Base-to-New Generalization

To evaluate the generalization ability of PAT, we equally
split each dataset into base and new classes. The model is
trained using the base classes in a 16-shot setting and evalu-
ated on new classes. To simultaneously evaluate the fitting
ability, generalization capability, and overall performance,
we report the classification accuracy for both base classes
and new classes, as well as their harmonic mean.

Table 2 shows that PAT achieves state-of-the-art perfor-
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Table 3. Accuracy (%) for few-shot classification. PAT achieved state-of-the-art performance, delivering an absolute performance
improvement of 1.5% compared to TCP.
Datasets CLIP CoOp CoCoOp ProGrad KgCoOp MaPLe TIP-Adapter-F DAPT PromptSRC PLOT TaskRes TCP PAT

ImageNet 66.7 69.4 70.6 70.2 70.2 70.7 70.8 70.8 70.8 70.4 62.9 70.5 70.8
Caltech101 93.3 94.4 95.0 94.9 94.7 94.3 94.8 94.2 94.8 95.1 94.7 95.0 95.5
OxfordPets 89.1 91.3 93.0 93.2 93.2 92.1 92.3 92.2 93.2 92.6 92.0 91.9 93.5
StanfordCars 65.7 72.7 69.1 71.8 72.0 68.7 74.4 74.4 71.8 74.9 75.9 76.3 75.7
Flowers 70.7 91.1 82.6 90.0 90.7 80.8 93.0 92.4 91.3 92.9 91.5 94.4 93.7
Food101 85.9 82.6 86.6 85.8 86.6 86.9 86.2 83.6 86.1 86.5 86.0 85.3 86.3
Aircraft 24.9 33.2 30.9 32.9 32.5 29.0 35.5 32.5 32.8 35.3 33.8 36.2 38.0
SUN397 62.6 70.1 70.5 71.2 71.8 71.5 70.7 72.2 72.8 70.4 72.7 72.1 74.0
DTD 44.3 58.6 54.8 57.7 58.3 54.7 61.7 61.4 60.6 62.4 59.6 64.0 65.4
EuroSAT 48.3 68.6 63.8 70.8 71.1 54.9 78.3 72.7 75.0 80.7 72.9 77.4 85.3
UCF101 67.6 77.4 75.0 77.8 78.4 73.7 79.7 79.4 79.4 79.8 76.1 80.8 81.7

Average 65.4 73.6 72.0 74.2 74.5 70.7 76.1 75.1 75.3 76.5 74.4 76.7 78.2

Table 4. Accuracy (%) for cross-dataset generalization. PAT achieved state-of-the-art performance in all settings.
Parameter-Efficient Fine-Tuning On DTD Base Classes

Methods Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 EuroSAT UCF101 ImageNet Average

CLIP 93.3 89.1 65.6 70.7 85.9 24.7 62.6 48.3 67.6 72.4 68.0
TCP 91.6 86.8 64.7 68.5 85.2 20.5 62.1 46.4 68.2 65.6 66.0
PAT 96.7 89.4 60.3 66.3 87.9 22.4 72.0 57.5 68.6 71.6 69.3

Parameter-Efficient Fine-Tuning On EuroSAT Base Classes
Methods Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 DTD UCF101 ImageNet Average

CLIP 93.3 89.1 65.6 70.7 85.9 24.7 62.6 44.1 67.6 72.4 67.6
TCP 86.4 82.8 61.4 65.1 83.3 16.5 51.6 34.8 63.3 58.8 60.4
PAT 96.8 87.0 60.4 63.3 88.9 21.4 70.7 53.9 68.9 69.2 68.1

Parameter-Efficient Fine-Tuning On ImageNet all Classes
Methods Caltech101 OxfordPets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Average

CLIP 93.3 89.1 65.6 70.7 85.9 24.7 62.6 44.1 48.3 67.6 65.2
CoOp 93.7 89.1 64.5 68.7 85.3 18.5 64.2 41.9 46.4 66.6 63.9
ProGrad 91.5 89.6 62.4 67.9 85.4 20.2 62.5 39.4 43.5 64.3 62.7
KgCoOp 93.9 89.8 65.4 70.0 86.4 22.5 66.2 46.4 46.0 68.5 65.5
DePT 94.2 90.0 65.6 70.6 86.4 23.3 66.7 46.0 43.5 69.3 65.6
VPT 93.7 89.3 65.5 70.2 86.3 22.1 66.6 46.9 47.4 67.2 65.5
PLOT 92.1 90.1 65.7 69.2 86.2 25.0 61.7 38.6 47.8 67.0 64.3
PromptSRC 93.6 90.3 65.7 70.3 86.2 23.9 67.1 46.9 45.5 68.8 65.8
MaPLe 93.5 90.5 65.6 72.2 86.2 24.7 67.0 46.5 48.1 68.7 66.3
DAPT 93.5 90.7 65.9 71.7 86.1 23.0 67.0 44.0 52.5 68.7 66.3
TCP 94.0 91.3 64.7 71.2 86.7 23.5 67.2 44.4 51.5 68.7 66.3
PAT 93.4 90.2 65.8 71.3 86.0 24.5 67.6 46.1 50.8 68.9 66.5

mance on 9 out of 11 datasets and is competitive on the
remaining SUN397 and Flowers datasets. Compared with
CoOp (Zhou et al., 2022b), PAT achieves an accuracy gain
of 5.9% on average and 3.2% and 8.1% on the base and
new classes, respectively. Furthermore, PAT outperforms
the state-of-the-art TCP by 0.9% on average (80.4% vs.
79.5%), 1.5% on the base classes (85.6% vs. 84.1%), and
0.7% on the new classes (76.1% vs. 75.4%). These results
demonstrate that PAT achieves better fitting capability and
generalization ability compared to existing methods.

4.3. Few-Shot Classification

To better validate the ability of our proposed PAT to perform
transfer learning with limited data, we conducted few-shot
classification experiments on 11 datasets. All methods were
trained using K-shot training images and corresponding
class labels, and evaluated on test sets that share the same
class space as the training sets. Following previous ap-
proaches, we present classification performance on 4-shots.

Table 3 shows that PAT achieves the best performance in
8 out of 11 datasets. For example, in DTD, we improved
performance from 64% to 65.4%; in EuroSAT, from 77.4%
to 85.3%; and in SUN397, from 72.8% to 74.0%. Overall,
PAT shows a 1.5% improvement compared to the previous
state-of-the-art, providing strong evidence of its capability
for downstream transfer learning with limited samples.

4.4. Cross-Dataset Generalization

In base-to-new generalization, the base and new classes are
sampled from the same datasets, and thereby are similar in
data distribution. To further evaluate the generalization of
PAT, we conduct a cross-dataset generalization experiments.
Unlike previous studies, we aim to verify whether models
maintain strong generalization capabilities after downstream
transfer under truly small-scale data with limited samples.
Thus in this experiment, all methods are trained on the base
classes of the DTD and EuroSAT datasets and all classes of
ImageNet in 16-shots settings under three distinct random
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Figure 3. Ablation study of prompt length.

seeds, and subsequently evaluated on all categories of the
other datasets. We compare the proposed PAT with Zero-
shot CLIP and TCP (demonstrating robust performance in
base-to-new scenarios).

Table 4 shows that, when trained on these cross-distribution
few-shot datasets, TCP is inferior to Zero-shot CLIP in most
cases. Notably, after training on the satellite imagery dataset
EuroSAT, TCP exhibits a 7.2% performance gap relative
to Zero-shot CLIP. This discrepancy persists at 2.0% when
trained on DTD. In contrast, PAT outperforms TCP by 7.7%
and 3.3% on these two datasets respectively while simulta-
neously surpassing Zero-shot CLIP, further demonstrating
PAT’s strong generalization capabilities.

4.5. Ablation Studies

Ablation studies are performed on on base-to-new gener-
alization on the EuroSAT, DTD, and UCF101 datasets to
validate the loss function, adapter configuration, and prompt
length. We evaluate on each dataset using three random
seeds, and report average accuracy for base classes, new
classes, and their harmonic mean.

Loss Function: We first validate the effectiveness of the
proposed loss function, including the alignment loss to con-
strain the pre-trained and fine-tuned models, alignment loss
to constrain pre-adjustment and post-adjustment, and the
tolerance regularization for constructing a robuster classifier.
Table 5 shows that the absence of the tolerance regulariza-
tion results in a 1.4% decline in overall performance on
EuroSAT, with accuracy decreasing by 1.3% on the Base
category and 1.4% on the New category. On DTD, the over-
all performance drops by 0.4%, with a 1.3% decrease in the
Base category. Similarly, when the forward-backward cali-
bration loss is removed, the accuracy on EuroSAT decreases
by 2.7% in the New category and 1.6% overall. On DTD,
the Base, New, and overall performance decrease by 0.3%,
2.3%, and 1.6%, respectively.

Adapter Configuration: Since PAT relies on adapters to
constrain the update direction of prompt learning, we per-
form ablation experiments on the scaling factor α and hid-
den dimensions r of the adapter. Table 6 shows that the
configuration with α = 0.1 and r = 16 achieves the best
comprehensive performance overall. However, other hyper-
parameter combinations can outperform this configuration
on specific datasets. For instance, α = 0.1 and r = 8
perform better on UCF101, while α = 0.01 and r = 16

Table 5. Ablation study of Loss function. B, PP, and Tol are the
abbreviations of Baseline, Pre-Post, and Tolerance respectively.

B PP Tol EuroSAT DTD UCF101
Base New H Base New H Base New H

✓ ✓ 93.5 73.0 82.0 84.0 63.6 72.4 89.0 79.2 83.8
✓ ✓ 95.2 71.7 81.8 85.0 61.2 71.2 89.0 80.5 84.5
✓ ✓ ✓ 94.8 74.4 83.4 85.3 63.5 72.8 89.2 79.3 84.0

Table 6. Ablation study of hyper-params in adapter config.

α r
EuroSAT DTD UCF101

Base New H Base New H Base New H

0.1 2 94.1 66.5 77.8 83.9 63.6 72.4 88.3 79.2 83.5
0.1 4 93.7 72.0 81.4 84.1 63.4 72.3 88.2 78.4 83.0
0.1 8 94.1 74.4 83.1 84.3 62.0 71.5 89.5 79.6 84.2
0.1 16 94.8 74.4 83.4 85.3 63.5 72.8 89.2 79.3 84.0

10.0 16 96.0 68.0 79.6 84.8 58.9 69.5 87.0 74.7 80.4
1.0 16 96.2 65.2 77.7 83.9 57.9 68.5 87.4 78.1 82.5
0.1 16 94.8 74.4 83.4 85.3 63.5 72.8 89.2 79.3 84.0

0.01 16 92.8 75.9 83.5 83.7 60.3 70.0 86.4 78.2 82.1

achieve superior results on EuroSAT. Note that, compared
to the hidden dimension r, the scaling factor α has a more
significant impact on performance across all three datasets.

Prompt Length: We investigate the impact of prompt
length under the Base-to-New configuration. We compare
the performance effects of prompt lengths ranging from 2
to 8. Figure 3 shows that the length of the prompt has a
certain impact on performance. In previous experiments,
we fixed the prompt length to 4. However, when the prompt
length is set to 2, 6, or 7, PAT’s performance on EuroSAT
can be further improved, and a length of 2 achieves better
performance on UCF101. Nevertheless, as indicated by the
trend lines in the figure, PAT is generally insensitive to the
choice of prompt length.

5. Conclusion
In this paper, we propose a novel prompt learning approach
based on pre-adjustment, post-adjustment, and contrastive
learning. To further enhance the fitting ability and gener-
alization of current prompt learning methods, we employ
adapter-based feature adaptation as a post-adjustment to re-
fine the optimization direction of prompt learning, allowing
it to acquire knowledge in the parameter space. Further-
more, we utilize a tolerance regularization to bring known
samples closer to text representations while penalizing noise
samples against existing text representations, resulting in
a more robust multimodal classifier.Our extensive experi-
mental results, including Base-to-New, Cross-dataset, and
few-shot evaluations, demonstrate that our proposed method,
PAT, achieves significant advancements in both fitting per-
formance and generalizability compared to previous SOTA.
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Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Proof of Proposition 1
When we only consider the positive samples Then we have the sigmoid loss function as

L = − 1

|B|

|B|∑
i=1

log κ(cfiti − b). (20)

where κ is the sigmoid function as κ(u) = 1
1+e−u Besids, the cross entropy can be simplified as

H(ŷ, y) = − 1

|B|

|B|∑
i=1

log
ecfitk∗+b∑K
j=1 e

cfitj+b
. (21)

Considering that only on positive textual label for each image sample. Besides, Similarity scores for all negative samples are
constant as cfitj + b = 0(j ̸= k∗). Then we have

K∑
j=1

ecfitj+b = ecfitk∗+b + (K − 1)e0 = ecfitk∗+b + (K − 1). (22)

Then the cross entropy degrads into:

H(ŷ, y) = − 1

|B|

|B|∑
i=1

log
ecfitk∗+b

ecfitk∗+b + (K − 1)
. (23)

When we further consider the binary classification, i.e., whether the image feature is aligned with the textual description, we
have

H(ŷ, y) = − 1

|B|

|B|∑
i=1

log
ecfitk∗+b

ecfitk∗+b + 1
= − 1

|B|

|B|∑
i=1

log κ(cfitk∗ + b). (24)

B. Domain Generalization
Domain generalization experiments involve training a model on the source domain and testing it on the target domain,
making them useful for evaluating model generalization. Therefore, we train PAT under the ImageNet 16-shot setting
and test it on ImageNetV2, ImageNet-Sketch, ImageNet-A, and ImageNet-R. The final results are reported as the average
performance across these five datasets. As shown in Table 7, PAT still holds state-of-the-art performance.

Datasets ImageNet -V2 -S -A -R Avg.

CoCoOp 71.0 64.1 48.8 50.6 76.2 62.1
ProGrad 72.2 64.7 47.6 49.4 74.6 61.7
KgCoOp 71.2 64.1 49.0 50.7 76.7 62.3
MaPLe 70.7 64.1 49.2 50.9 77.0 62.4
DAPT 71.7 64.5 49.5 51.1 76.3 62.6
TCP 71.2 64.6 49.5 51.2 76.7 62.6
PromptSRC 71.3 64.4 49.6 50.9 77.8 62.8
PAT 72.8 66.5 49.4 49.0 77.1 63.0

Table 7. Performance comparison across different methods on Domain Generalization Experiment. PAT achieved state-of-the-art
performance, delivering an absolute performance improvement of 0.2% compared to PromptSRC.
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