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Abstract

Parameter-efficient transfer learning (PETL) has emerged as
a promising direction to fine-tune lightweight modules and
adapt large-scale pre-trained models to downstream tasks.
Nevertheless, these methods have not thoroughly explored
the characteristics of PETL methods to optimize the fine-
tuning performance with miminal volume of parameters. In
this paper, we first reveal that, compared to pre-trained mod-
els, PETL tends to generate similar features via homogeneous
feature transformations across different layers. Subsequently,
we propose a Global Sharing Local Transformation frame-
work, namely GLEAM that decomposes the adapter into a
shared component and layer-specific local components to si-
multaneously reduce the redundancy in layer-wise parameter
matrices for homogeneous feature transformations and fine-
tune the locally specific parameters for minimizing perfor-
mance loss. Speficially, we develop a shared mixture of con-
volution that introduces shared multi-scale sparse MoE to en-
able diverse transformations for suppressing the homogene-
ity issue of feature transformations in PETL. To accurately
evaluate GLEAM, we test it on more than 20 datasets for
image classification and few-shot learning performance. Ex-
perimental results demonstrate that the proposed method per-
forms on par with existing PETL methods like LoRA with
only 3% of its parameters and further yields competitive per-
formance using only 0.07M parameters.

Introduction

Large-scale deep learning models have achieved remarkable
success in the fields of natural language processing (Vaswani
et al. 2017) and computer vision (Dosovitskiy et al. 2021).
However, these models are usually over-parameterized,
computationally expensive, and resource-intensive when
trained from scratch for each task. To circumvent this is-
sue, the pre-training then fine-tuning paradigm leverages
pre-training of large-scale datasets to initialize for spe-
cific downstream. Under such paradigm, parameter-efficient
transfer learning (PETL) (Hu et al. 2022; Houlsby et al.
2019; Li and Liang 2021; Pfeiffer et al. 2021) further
demonstrates significant potential in reducing learnable pa-
rameters , consequently garneres extensive attention in the
study of large-scale language and vision models.

Existing PETL methods can be categorized into three
types, i.e., re-parameterization based, prompt based, and
adapter based. Re-parameterization based methods such as
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Figure 1: Comparison between GLEAM and other PETL
methods on VTAB-1K.For all experiments, we utilize ViT-B pre-
trained on ImageNet-21K as base model. GLEAM achieves very
competitive performance with a very small number of parameters

LoRA (Hu et al. 2022) decompose model parameters into
the product of two trainable low-rank matrices. Prompt
based methods like Vision Prompt Tuning (Jia et al. 2022)
insert trainable tokens into the input sequence, whereas
adapter based methods like Adaptformer (Chen et al. 2022)
introduce a parallel small-scale trainable bottleneck into the
pre-trained models. Different from the pre-trained large-
scale models (Dosovitskiy et al. 2021), we reveal that PETL
tends to achieve homogeneous transformations. As demon-
strated in Figure 2, we find that the features extracted by
PETL module exhibit significantly higher cosine similarity
and lower L2 distance. This observation suggests that fea-
ture transformations become uniform across different layers
during PETL, which may necessitate layer-wise fine-tuning
of excessive parameters. Consequently, we resort to propose
to weight sharing to enhance parameter efficiency for PETL.

However, as shown in Figure 3, directly applying weight
sharing to PETL could exacerbate rather than alleviate ho-
mogeneity across different layers, and result in evidently de-
graded performance on downstream tasks. To address this
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Figure 2: Heatmap of Cosine Similarity and L2 distance between features extracted by ViT and LoRA from different layers. To
better accentuate the differences, we set the diagonal elements of the cosine similarity matrices to the common maximum value
of the two similarity matrices, while setting the diagonal elements of the L2 distance matrices to the common minimum value
of the two distance matrices.It can be observed that compared to the features extracted from the pre-trained model, the features
extracted by LoRA exhibit higher cosine similarity as well as lower L2 distance.

problem, we propose a novel PETL framework, namely
GLobal sharE locAl transforM MoE (GLEAM) that glob-
ally shares a significant portion of parameters in the adapter
modules while applying local transformations to each spe-
cific parameter matrix or layer for fine-tuning. We develop a
shared form of multi-scale sparse mixture-of-expert (MoE)
for PETL to enable diverse transformations and multi-scale
feature decoupling with marginally increasing number of pa-
rameters. The proposed framework achieves a more favor-
able trade-off between task performance and storage cost.
The contributions of this paper are summarized as below.

* We reveal the issue of homogeneous feature transforma-
tions across different layers and demonstrate the feasibil-
ity of weight sharing for PETL.

* We propose a GLobal sharE locAl transforM MoE
(GLEAM) framework that globally shares the vast major-
ity of parameters and fine-tunes a small portion of local
parameters to adapt to different layers with significantly
reduced parameters.

* We develop a shared multi-scale sparse MoE to en-
able diverse transformations that suppress the homoge-
neous feature transformations of PETL and achieve bet-
ter trade-off between storage cost and task performance.

To validate the capabilities of GLEAM, we evaluate it
on over 20 datasets (Zhai et al. 2019; Krause et al. 2013;
Nilsback and Zisserman 2006; Parkhi et al. 2012; Bossard,
Guillaumin, and Van Gool 2014; Maji et al. 2013). Exper-
iments demonstrate that GLEAM could achieve competi-
tive performance while maintain very low storage overhead.
Specifically, GLEAM-T using only 0.009M parameters (3%
of LoRA) and perform on par with LoRA. Futhermore,
GLEAM-B and GLEAM-L with 0.02M and 0.07M parame-
ters could exceed most advanced adapter method.

Related Work

Parameter-Efficient Transfer Learning (PETL) has been
widely used in the NLP domain (Houlsby et al. 2019; Hu

et al. 2022; Chen et al. 2022; Li and Liang 2021) to adapt
models to downstream tasks by fine-tuning a small portion
of parameters while keeping the majority of weights fixed.
Traditional PETL methods can be categorized into adapter-
based, prompt-based, and re-parameterization-based meth-
ods. Adapter-based methods (Chen et al. 2022) usually in-
troduce a small module for fine-tuning while keeping the
overall model weights fixed. Re-parameterized-based meth-
ods such as LoRA (Hu et al. 2022) decompose model pa-
rameters into several trainable low-rank matrices and use
these low-rank matrices to update the original model param-
eters. Prompt-based methods (Jia et al. 2022) insert train-
able tokens into the input sequence of the model. In this
paper, we explore the homogeneity of transformations in
PETL modules, which has been overlooked by these meth-
ods, decomposing an adapter into shared and local com-
ponents while introducing sparse multi-scale mixture-of-
convolutions to minimize the negative impacts of sharing.
As a result, we propose a new high-performance adapter-
based PETL method called GLEAM and provides a better
trade-off between performance and efficiency.

Mixture of Experts (MoE) (Zhong et al. 2024; Li, Murray,
and Carenini 2023; Daxberger et al. 2023; Feng et al. 2023;
Shazeer et al. 2017) has been studied for over 30 years,
evolving from its initial formulation as an entire model to be-
ing integrated as a component within deep neural networks.
Despite the variations in its implementation, the core idea
remains consistent: training multiple experts specialized in
different domains and utilizing a gate module to select the
appropriate expert for a given input. The potential of the
MOoE structure has been gradually uncovered in recent years
to handle complex problems with distinctive experts. Par-
ticularly, it is demonstrated a significant role in large lan-
guage models. In this paper, we introduce the concept of
MoE into GLEAM to increase the transformation diversity
of the PETL module and enhance the representation capa-
bility of our model through multi-scale features.

Weight Sharing aims at enhancing parameter efficiency
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Figure 3: Average cosine similarity between features of ad-
jacent blocks (green columns) and top-1 accuracy (blue
columns) on CIFAR100.

by reusing and updating a portion of parameters within a
neural network, thereby achieving more efficient utilization
of model parameters. Mathematically, weight sharing for a
neural network with N repeated layers such as the Trans-
former can be formulated as H; 1 = f(H;,0), where H; 1
and H; denote the input and output of the ¢-th layer, and
0 means the shared parameters across all layers. The core
idea of weight sharing has been explored and implemented
in NLP and CV domains, including popular BERT, DeiT,
and Swin Models (Lan et al. 2020; Zhang et al. 2022; Tou-
vron et al. 2021). In contrast to pre-trained models, weight
sharing has not been sufficiently explored for PETL, where
weight sharing for parameter reduction without performance
loss remains unresolved. In this paper, we demonstrate the
feasibility of weight sharing and employ it to further reduce
the required parameter count for PETL.

Proposed Method
Preliminaries

In this paper, we focus on the Vision Transformer (ViT)
(Dosovitskiy et al. 2021). A basic ViT begins with splitting
an input image I € R¥>*W>3 into a sequence of fixed-size
patches. These patches are then mapped to tokens 2 € R™*¢
via a patch embedding layer and concatenated with a learn-
able classification token z.s € R?. Positional embeddings
Epos € R +1)xd are added to preserve positional informa-
tion. This process can be formulated as:

71‘1[} + Epos (€))

X is then fed into ViT blocks that are primarily composed
of multi-head self attention (MHSA) (Vaswani et al. 2017)
and feed-forward network (FEN). For the /-th ViT block,

X| = MHSA(LN(X;-1)) + X1, )
X; = FFN(LN(X))) + X|, (3)

where LN denotes layer normalization. In the MHSA layer,
there are four transformations, i.e., query, key, value, and
output projection, and N heads are built for each trans-
formation. The parameters for the i-th head include Wy, ;,

Xo = [Ters; o, T1, T2, . . -

Wi .i» Wy.i, Wo; € R4, Similarly, FFN contains two
fully-connected layers with parameters W, € R%*4¢ and

Waown € R*4*4_For simplicity, we omit the bias terms.
MHSA and FFN can be formulated as:

MHSA (X)
= iSof‘cmax(W) XWy:Wo.i, (4)
2 Nz v,ivo,i,
FFN(X) = GELU(X - W) Wiown- (5)

Motivation: Homogeneous Feature
Transformations in PETL

We first reveal that, different from pre-trained models, exist-
ing PETL modules achieve homogeneous feature transfor-
mations for feature extraction. Most of existing PETL meth-
ods map the input features to a low-rank space using a low-
dimensional structure to approximate the high-dimensional
structure of the pre-trained model. Despite removing re-
dundant information, these methods could discard a large
amount of potentially useful information is discarded dur-
ing fine-tuning and generates features that suffer from in-
sufficient represention capacity for downstream tasks. Sub-
sequently, we provide empirical evidence using the widely
used LoRA (Hu et al. 2022).
Given the input =, LoORA can be represented as:

h = Wyx + BAx, (6)

where B € R™*" and A € R"*™ are the LoRA matrices,
Wy € R™*™ denote the pretrained weight, and h is the final
output. We apply LoRA to Wy of the MHSA layer in ViT
and extract two sets of feature maps, i.e., Wox and BAz,
from different layers of the fine-tuned model and evaluate
their similarity in terms of cosine similarity and L2 distance.

As shown in Figure 2, compared to the feature maps ob-
tained from the pre-trained model, the feature maps trans-
formed by the fine-tuned parameter matrices exhibit higher
cosine similarity and lower L2 distance. We take the cosine
similarity as an example. The main similarities in the heat
map are between features of adjacent blocks. Thus, we fur-
ther calculate the average cosine similarity between adjacent
blocks of LoRA, as shown in Figure 3. Compared with ViT,
the average cosine similarity of features extracted by LoRA
in adjacent blocks is 0.14 (84.4%) higher and the average L.2
distance is 210.1 (59.5%) lower. This result demonstrates
the highly homogeneous feature transformations of PETL
compared to the pre-trained model.

This homogeneity is a characteristic of existing PETL ap-
proaches, which means the parameter matrices of PETL tend
to implement more similar transformations and lead to more
similar parameter distributions. Compared to large-scale
pre-trained models, the transformations performed by PETL
modules are more homogeneous. Meanwhile, to better il-
lustrate the problems brought by weight sharing and how
we solve the aggravated homogenization problem caused by
weight sharing, we also provide the corresponding similar-
ities and performance of Share LoRA (will be explained in
next section) and GLEAM in Figure 3.
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Figure 4: Overall Structure of GLEAM. Modules in white frame except pretrained matrices with the same color means the
same parameters. For each pre-trained layer or pre-trained matrix , the convolutional layers for up/down-sampling and the MoE

module in GLEAM adopt a global sharing strategy.

GLEAM: Global Share Local Transform MoE

Overview As depicted in Figure 4, GLEAM decomposes
the Adapter structure into shared components and introduces
an extra local convolution module specifically designed for
demultiplexing. This module mitigates the performance loss
caused by weight sharing with slightly increasing number of
parameters. The shared MoE modules alleviate transforma-
tion homogeneity brought by weight sharing and selectively
engage the most suitable experts based on the input. See ap-
pendix for detailed description of GLEAM.

Feasibility of Weight Sharing in PETL  Weight sharing,
as a method to improve parameter efficiency, has proven its
potential in the NLP domain. Simultaneously, weight shar-
ing is highly aligned with the purpose of PETL to a cer-
tain extent. As inferred from the preceding content, PETL
is theoretically well-suited for integration with weight shar-
ing. However, applying weight sharing may impact perfor-
mance to a certain extent. Compared to large-scale and fully
trained models, PETL has already undergone a parameter re-
duction process. It is imperative to investigate the feasibility
of weight sharing in PETL and its effect on PETL. Thus, we
directly develop a weight-sharing form (SLoRA) for LoRA.

h=Wyz+ B Az, @)

where B’ and A’ are global LoRA matrices. However, this
direct modification causes a certain degree of performance
loss and introduces instability during training. Specifically,
when fine-tuning Wy in the MHSA layer for a ViT pre-
trained on ImageNet-21K and keeping the training settings
aligned, using SLoRA led to an accuracy loss of nearly 0.7%
on the CIFAR-100 dataset compared to LoRA.

Global Sharing and Local Transformations Although
the performance loss of weight sharing on PETL is smaller
compared to sharing the pre-trained model, we aim to min-
imize this performance degradation by introducing a slight

storage overhead. We assign a local transformation to each
pretrained matrices for demultiplexing(Zhang et al. 2022).
Experimental results demonstrate that by incorporating lo-
cal parameters, the LoRA approach, which simultaneously
performs sharing and localization, reduces the original per-
formance loss to 0.3%. Since this local transformation is
conducted in a low-dimensional feature space, we argue that
introducing a highly limited memory overhead while signif-
icantly reducing the performance loss represents a more fa-
vorable trade-off between storage and performance. How-
ever, although these experiments demonstrate that weight
sharing can be applied to PETL at a relatively low cost, as
shown in Figure 3, simply sharing weight matrices will in-
evitably lead to more information loss, thus exacerbating the
issue of homogeneity in PETL. Therefore, we need to ex-
plore additional methods to mitigate this problem.

Multi-scale Mixture of Experts for Mitigating Homo-
geneity Based on the aforementioned findings, the issue of
exacerbated transformation homogeneity caused by weight
sharing necessitates a solution from another perspective.
Therefore, to enable PETL to leverage diverse transforma-
tions during the fine-tuning process and enhance its under-
standing of new datasets through features at different scales,
we have decided to adopt a shared Mixture of Experts (MoE)
module. Numerous studies (Wu et al. 2021; Jie and Deng
2022) have provided compelling evidence supporting the
efficacy of integrating convolutional operations into ViTs.
Building upon this well-established theoretical foundation,
we incorporate visual inductive biases into ViTs while con-
currently designing MoE. The entire MoE module consists
of a gating module and multiple experts E. To avoid unnec-
essary parameter overhead, instead of using multiple con-
volutional kernels of different sizes, each expert in our ap-
proach performs interpolation at different ratios on the input
feature maps, followed by a convolutional layer of the same



size and average pooling. Given the input z;,, the output
Zout Of the MoE module is formulated as:

E; = AvgPool,(Conv3 x 3(Upsample;(zin))),  (8)

Zout = Z Gl(zzn) X Ei(zin)7 (9)
i=1
where G denotes the gating module with two parameter ma-
trices, i.e., Wy € R™" and W,, € R"™". W, is used to
learn the gating transformation, while W,, is used to learn
the noises. The gating module G(h) is formulated as

G(h) = Softmax(Top-K(H (h), k)), (10)
where
H(h) =h-Wy,+ N(0,1) - Softplus(h - W,,), (11)
o, v; 1s top-k elements in v
Top-K(v, k) = {—oo, otherwise - 12

Experts are selected based on the input features by mak-
ing the elements beyond the first £ elements to infinity and
applying the softmax function. Consequently, MoE module
chooses the most appropriate feature maps for each input
and aggregates them, thereby achieving the previously stated
objective of facilitating multi-scale feature extraction.

Experiments

We evaluate different parameter configurations of GLEAM
for ViTs and Hierarchical Transformers like Swin-B on the
VTAB-1K benchmark (Zhai et al. 2019). VTAB-1K con-
sists of 19 datasets, covering three distinct data domains:
natural images (Nature Images), images from remote sens-
ing and medical domains (Special Images), and multiple vi-
sual scene understanding datasets (Structure Images). Each
dataset contains 1,000 samples divided into a training set of
800 samples and test set of 200 samples. Top-1 accuracy on
the test set is reported.

Results for Vision Transformers

Baselines Highly competitive methods are selected as
baselines, including BitFit (Zaken, Ravfogel, and Goldberg
2022), Adapter (Houlsby et al. 2019), VPT-shallow (Jia
et al. 2022), VPT-deep, Adapter-Former (Chen et al. 2022),
LoRA (Hu et al. 2022), NOAH (Zhang, Zhou, and Liu
2024), SSF (Lian et al. 2022), FacT (Jie and Deng 2023),
and RepAdapter (Luo et al. 2023). Additionally, we provide
a trade-off analysis of our method’s performance and storage
overhead compared to the existing state-of-the-art method,
GLoRA (Chavan et al. 2023). For all the baselines, we set
the latent dimension and LoRA rank to 8, while the prompt
length for VPT follows the description in (Jia et al. 2022).
To showcase the advantages of our method, we also include
the performance of full fine-tuning and linear probing.

Implementation Details We use ViT-B/16 pre-trained on
ImageNet-21K (Deng et al. 2009) as the base model. The
latent dimension is set to 4 for GLEAM-T, 8 for GLEAM-B,
and 16 for GLEAM-L. Following Chavan et al. (2023), we
use AdamW as the optimizer and employ cosine annealing

and warmup scheduling. The batch size is 32 for training.
For all tasks, « is selected from {0.01,0.1,1, 10,100}, the
number of experts n is fixed to 4, and the number of selected
experts k is searched from {1, 2, 3}.

Results Figure 1 illustrates the detailed results on VTAB-
1K, as summaized below.

i): GLEAM shows highly competitive performance.
GLEAM-L using ViT as the backbone only requires 0.07M
parameters and outperforms most recent state-of-the-art
PETL methods like NOAH, FacT, and RepAdapter on
VTAB-1K. Compared to the best RepAdapter, GLEAM-L
uses only one-third parameter counts to obtain competitve
performance. These results substantiate the effectiveness of
our optimization tailored to the characteristics of PETL.

ii): GLEAM-B yields an average accuracy of 75.9% us-
ing only 0.02M parameters. It suffers a trivial 0.2% ac-
curacy loss in comparison to RepAdapter and outperforms
all the remaining PETL methods. Furthermore, GLEAM-T
achieves the same performance as the baseline LoRA us-
ing only 3% parameter counts (i.e., 0.009 M vs. 0.29 M).
Even with a significant reduction in parameter count, main-
taining the existing Global Sharing Local Transformation
framework combined with the MoE extension for mitigating
homogeneity, we still achieve excellent performance. This
result further corroborates that designing PETL methods by
considering both transformation similarity and transforma-
tion diversity is an effective approach.

In Table 3, we further compare with the state-of-the-art
GLoRA (Chavan et al. 2023) that pre-trains an extremely
large supernet. We adopt a rank of 1 and keep other ex-
perimental settings same to train a supernet with approxi-
mately 0.53M parameters and obtain GLoRA with 0.19M
parameters. GLoRA suffers from degraded performance and
is inferior to GLEAM, when the parameter count further de-
creases. Note that the GLoRA module is varying in prac-
tical applications, since it necessitates pre-training a large
supernet for each dataset, a process that incurs consider-
able memory and time overhead, and requires an extra time-
consuming evolutionary search on the supernet. Compared
with GLoRA, we flexibly trade-off training time, storage re-
quirements, application feasibility, and performance.

Results for Hierarchical Transformers

We further perform experiments with Swin-B (Liu et al.
2021) as base model. When applying our approach to the
Hierarchical Transformer, we maintain global sharing of
the MoE modules, while the convolutional layers used for
channel modification are adjusted according to the dimen-
sions of each SwinBlock. In other words, this part consists
of four shared convolutional layers with different channels.
Additionally, we select RepAdapter, which performs best
in ViT, as well as the classic VPT, BitFit, full fine-tuning,
and linear probing for comparison. Table 4 shows that, de-
spite SwinTransformer incorporates visual biases into con-
sideration and extracts features at different scales through
sliding windows, our model still achieves excellent perfor-
mance on Hierarchical Transformers. Specifically, GLEAM
significantly outperforms other baselines and is comparable



Table 1: Full results on VTAB-1K benchmark. GLEAM-B exceeds most existing adavanced PETL method with only 0.02 M
trainable parameters while GLEAM-L achieves state-of-the-art performance with 0.07 M trainable parameters.
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Traditional Tuning
Full-Tuning 85.8 |68.9 87.7 64.3 97.2 86.9 87.4 38.8|79.7 95.7 84.2 73.9|56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1|68.9
Linear 0 |64.4 85.0 63.2 97.0 86.3 36.6 51.0|78.5 87.5 68.5 74.0/34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2|57.6
Parameter Efficient Transfer Learning
BitFit 0.10 |72.8 87.0 59.2 97.5 85.3 59.9 51.4|78.7 91.6 72.9 69.8]61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1|65.2
VPT-Shallow 0.06 |77.7 86.9 62.6 97.5 87.3 74.5 51.2|78.2 92.0 75.6 72.9|50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1/67.8
VPT-Deep 0.53 |78.8 90.8 65.8 98.0 88.3 78.1 49.6|81.8 96.1 83.4 68.4|68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8(72.0
Adapter 0.16 {69.2 90.1 68.0 98.8 89.9 82.8 54.3|84.0 94.9 81.9 75.5/80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6|73.9
AdaptFormer 0.16 |70.8 91.2 70.5 99.1 90.9 86.6 54.8|83.0 95.8 84.4 76.3|81.7 64.7 49.3 80.3 70.7 45.7 31.7 41.1|74.7
LoRA 0.29 |67.1 91.4 69.4 98.8 90.4 83.3 54.0|84.9 93.3 84.4 75.6(82.9 69.2 49.8 78.5 73.7 47.1 31.0 44.0|74.5
NOAH 0.36 [69.6 92.7 70.2 99.1 90.4 86.1 53.7|84.4 95.4 83.9 75.8|82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2|75.5
FacT 0.07 |70.6 90.6 70.8 99.1 90.7 88.6 54.1|84.8 96.2 84.5 75.7|82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0|75.6
SSF 0.24 169.0 92.6 75.1 99.4 91.8 90.2 52.9|87.4 95.9 87.4 75.5|75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9|75.7
RepAdapter 0.22 |72.4 91.6 71.0 99.2 91.4 90.7 55.1|85.3 95.9 84.6 75.9|82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0|76.1
Proposed methods
GLEAM-T 0.009|72.6 90.2 71.2 99.2 90.8 86.4 53.9/84.4 94.8 84.1 75.5|80.2 66.1 46.7 78.2 80.5 47.8 25.9 38.0|74.5
GLEAM-B  0.02 |73.0 91.2 71.4 99.2 90.9 88.7 54.385.7 95.7 85.7 75.1|81.3 66.7 51.0 80.6 85.5 50.6 31.5 40.8/75.9
GLEAM-L  0.07 |73.2 92.5 72.2 99.3 91.1 90.5 54.8/85.8 96.3 86.4 75.7|82.4 68.1 52.1 81.4 85.5 51.9 35.1 42.0/76.8
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Figure 5: Ablation Study on fine-tuning only attention layers in variants of GLEAM-B and GLEAM-L.

to Repadapter with only a half parameter counts.

Ablation Study

Ablation studies are performed on the VTAB-1K benchmark
to validate GLEAM. We explore the impact of weight shar-
ing on attention and linear layers and make sensitivity anal-
ysis on hyperparameters n, k, and a.

Impact of Fine-tuning Layer Selection We train variants
of GLEAM-L and GLEAM-B that fine-tune only the MHSA
layers while keeping the other settings consistent with the

previous experiments. As shown in Figure 5, for all exper-
iment groups, full fine-tuning generally outperforms fine-
tuning only the attention layers, especially when the hid-
den dimension is small. Compared to GLEAM-L, the vari-
ants fine-tuning only MHSA layers exhibits accuracy loss
of 0.8% on Natural Datasets, 0.4% on Special Datasets, and
1.3% on Structure Datasets. For GLEAM-B, the accuracy
loss is 0.6%, 0.4%, and 1.5% for the three datasets, respec-
tively. These results suggest that FFN plays a more crucial
role in tasks such as visual scene understanding. Another



Table 2: Ablation Study of Expert numbers n, k£ and scaling factor a.. The top row indicates that not use moe module.

DM | n | k| «

| CIFAR100  Caltech101

DTD Flowerl02 Oxford-Pets | Avg.

Ablation-Expert number

16 - - 1.0 71.5 91.0 69.8 99.3 90.7 84.5
16 211 1.0 72.3 91.7 71.1 99.2 90.9 85.0
16 3011 1.0 72.2 90.7 70.5 99.3 90.8 84.7
16 411 1.0 73.1 92.5 72.2 99.3 91.3 85.7
16 511 1.0 72.5 90.7 69.1 99.3 90.2 84.4
Ablation-Top-K expert
16 4 11 1.0 73.1 92.5 72.2 99.3 91.3 85.7
16 412 1.0 73.0 91.7 70.4 99.3 91.0 85.1
16 413 1.0 73.2 91.7 70.0 99.3 91.1 85.1
Ablation-Scaling factor
16 4 |11 001 72.1 90.1 70.2 99.0 90.4 84.4
16 4 11 0.1 72.7 91.0 70.2 99.2 91.0 84.8
16 411 1.0 73.1 92.5 72.2 99.3 91.3 85.7
16 4 111 10.0 72.0 90.7 69.6 99.2 90.1 84.3
16 4 |11 100.0 70.6 91.3 69.4 99.2 89.8 84.1

Table 3: Performance compared to glora on vtab-1k bench-
mark. Where Sup. Refers to the number of supernet pa-
rameters that GLoRA needs to train, and params refers to
the number of parameters after evolutionary search. Nat.,
Spe.,Str.,Ave. denote Nature Datasets, Special Datasets,

Structure Datasets and average accuracy respectively

Model | Sup.(M) Params(M) | Nat. Spe. Str. | Avg.
GLoRA 0.88 0.29 83.4 87.1 61.6|717.3
GLoRA 0.53 0.19 83.1 86.0 59.6|76.2
GLEAM - 0.07 82.0 86.1 62.3|76.8

Table 4: Results on VTAB-1K with Swin-B as backbone.
Our method still exceed full tuning and comparable to
RepAdapter with only half learnable parameters.

Model Params (M) | Natural Special Structure | Avg.
Linear 0 73.5 80.8 335 62.6
BitFit 0.20 74.2 80.1 424 | 65.6
VPT 0.16 76.8 84.5 534 | 71.6
Full 86.7 79.2 86.2 59.7 | 750
RepAdapter 0.42 82.7 87.5 62.0 77.4
GLEAM 0.21 83.0 86.9 622 | 774

noteworthy observation is that when the dimension is larger,
fine-tuning only the MHSA layers outperforms fine-tuning
both MHSA and FFN with a smaller dimension. This fur-
ther indicates that, in addition to the choice of pre-trained
parameters for fine-tuning, the hidden feature dimension re-
mains one of the key factors influencing performance.

Sensitivity Analysis of Hyperparameters Furthermore,
we evaluate the effect of hyperparameters like the number of

experts n, k for Top-K operation, and the scaling factor «.
Table 2 shows that removing the entire MoE leads to a 1.2%
performance loss on the 5 test datasets used. Additionally,
too few or too many experts does not significantly improve
performance. Especially when n is set to 5 , the MoE mod-
ule results in a negative gain. k may need to be determined
based on the dataset. In most cases 1 yields the best perfor-
mance, but on datasets such as CIFAR100, performance is
better when £ is set to 3. Regarding the scaling factor, main-
taining a=1.0 could achieves optimal performance on the 5
experimental datasets, while an excessively large or small «
leads to a severe performance degradation, which also im-
plies that the performance of GLEAM is relatively sensitive
to the selection of hyperparameters.

Conclusion

In this paper, we investigate the similarity of features in
PETL and discover that PETL methods tend to implement
more similar transformations. Based on this finding, we pro-
pose a novel PETL method called GLEAM. The key de-
sign of GLEAM lies in simultaneously leveraging the char-
acteristic of similar transformations in PETL by globally
sharing a significant portion of the adapter modules, while
introducing an MoE module to alleviate the issue of ho-
mogeneous transformations in PETL modules. Furthermore,
GLEAM achieves excellent performance while maintaining
extremely low storage overhead during training and subse-
quent storage overhead. To validate this, we evaluate the per-
formance of GLEAM on over twenty datasets, and the ex-
perimental results demonstrate our better trade-off between
storage overhead and performance.
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