
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHEBHIPOLY: HIERARCHICAL CHEBYSHEV POLY-
NOMIAL MODULES FOR ENHANCED APPROXIMATION
AND OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional deep neural networks (DNNs) predominantly adhere to a similar de-
sign paradigm. Even with the incorporation of additive shortcuts, they lack ex-
plicit modeling of relationships between non-adjacent layers. Consequently, this
paradigm constrains the fitting capabilities of existing DNNs. To address this
issue, we propose ChebHiPoly, a novel network paradigm to build hierarchical
Chebyshev polynomial connections between general network layers. Specifically,
we establish a recursive relationship among adjacent layers and a polynomial re-
lationship between non-adjacent layers to construct ChebHiPoly, which improves
representation capabilities of the network. Experimentally, we comprehensively
evaluate ChebHiPoly on diverse tasks, including function approximation, seman-
tic segmentation, and visual recognition. Across all these tasks, ChebHiPoly con-
sistently outperforms traditional neural networks under identical training condi-
tions, demonstrating superior efficiency and fitting properties. Our findings un-
derscore the potential of polynomial-based layer connections to significantly en-
hance neural network performance, offering a promising direction for future deep
learning architectures.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable progress across diverse areas (LeCun
et al., 2015), including computer vision (Krizhevsky et al., 2012; He et al., 2016; Huang et al., 2017),
natural language processing (Sutskever et al., 2014; Vaswani et al., 2017), reinforcement learning
(Mnih et al., 2013), speech recognition (Hinton et al., 2012) and other fields (Dong et al., 2021;
Wainberg et al., 2018). Despite these advancements, the underlying design paradigms often rely
on a fixed layer structure where non-adjacent layers have limited interactions, typically restricted
to additive shortcuts as seen in ResNets(He et al., 2016). Although considerable efforts have led
to innovations such as dense connections(Huang et al., 2017), attention mechanisms(Vaswani et al.,
2017), etc, the design paradigms constraint inherently restricts the expressive power and fitting ca-
pabilities of the network, thereby capping its potential performance.

The limited inter-layer relationships in neural networks constrain their learning and representational
capabilities. Despite the introduction of additive shortcuts, these simplistic additive inter-layer con-
nections still fail to provide the complex layer-wise interactions required(Bengio et al., 2013; Oye-
dotun et al., 2023). This observation raises a critical question: how can we enhance the interaction
between layers to improve both fitting capability and computational efficiency?

In this paper, we propose ChebHiPoly, a novel architecture that leverages Chebyshev polynomial
layer connections to enhance the representational capacity and efficiency of neural networks, moti-
vated by the best uniform approximation properties and numerical stability of Chebyshev polynomi-
als(Mason & Handscomb, 2002). Specifically, inspired by the approach of approximating numerical
functions using a family of basis functions, we establish Chebyshev polynomial connections be-
tween layers in ChebHiPoly. The process involves two key steps: (1) generating Chebyshev basis
functions of the layer features within the neural network, and (2) performing element-wise multi-
plication (Hadamard product) between these basis functions and the network’s output at the current
layer. The former establishes recursive relationship among adjacent layers while the latter constructs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The workflow of the paper: Given a network, generating Chebyshev basis functions of
the layer features within the neural network, and performing element-wise multiplication between
these basis functions and the network’s output at the current layer to establish Chebyshev polyno-
mial connections between layers in ChebHiPoly. Subsequently, ChebHiPoly demonstrates potential
for application across a diverse range of tasks, including function approximation, semantic segmen-
tation, and image classification.

polynomial relationship between non-adjacent layers. Thoses operations yield a new set of features,
whose weighted sum forms the network’s output features.

By employing Chebyshev polynomial transformations, ChebHiPoly enables a more flexible and ex-
pressive representation of data that goes beyond simple additive shortcuts, allowing for the seamless
integration of information from hierarchical layers, i.e., Chebyshev polynomial layers of different
degrees. This approach not only enhances the fitting capabilities of the network but also optimizes
its computational efficiency, addressing the growing concerns regarding resource utilization in deep
learning models (Han et al., 2015).

We further evaluate the representational power and fitting capabilities of ChebHiPoly through a
series of comprehensive experiments across various function approximation tasks, such as fitting
numerical functions, image generation (fitting unknown functions or distributions), and physical
law learning. We also validate the effectiveness of ChebHiPoly on classical computer vision tasks,
i.e., semantic segmentation and visual recognition. Our results consistently demonstrate that Cheb-
HiPoly outperforms traditional NNs under identical training conditions, highlighting its superior
efficiency and fitting properties. Specifically, ChebHiPoly achieves better performance metrics
with fewer parameters and reduced computational overhead, underscoring the practical benefits of
polynomial-based layer connections.

Our main contributions are summarized below:

• We introduce ChebHiPoly, a novel neural network architecture that leverages Chebyshev poly-
nomial connections to improve layer interactions, thereby enhancing the network’s representational
capacity and fitting accuracy.

• We provide comprehensive empirical evidence across a range of tasks, demonstrating that Cheb-
HiPoly consistently surpasses existing network architectures in both task accuracy and computa-
tional efficiency.

• We highlight the potential of polynomial-based layer connections to substantially enhance neu-
ral network performance, presenting a promising avenue for future advancements in deep learning
architectures.

Figure 1 illustrates the workflow and technical approach employed in this paper.

2 RELATED WORK

The success of DNNs relies on extensive research and thorough exploration of their architectures.
Vast categories of DNN layers, such as the fully-connected layer (LeCun et al., 1998), convolutional

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

layer (Krizhevsky et al., 2012), pooling layer (Krizhevsky et al., 2012), batch normalization layer
(Ioffe & Szegedy, 2015), etc, renders countless models like ResNet (He et al., 2016), gated recur-
rent unit (Cho et al., 2014), generative adversarial network (Goodfellow et al., 2014), Transformer
(Vaswani et al., 2017), etc.

Despite the substantial progress in DNN design, the prevailing architectural paradigm often imposes
limitations on the interaction between non-adjacent layers. Most conventional architectures employ
fixed pathways for information flow, where connections between layers are primarily additive or
sequential, restricting the model’s ability to capture complex relationships within the data (He et al.,
2016). Such designs restrict the approximation and representation capabilities of DNNs, making it
difficult to learn intricate patterns that extend beyond local interactions. Consequently, there is a
critical need for novel architectures that facilitate richer inter-layer connections, thereby enhancing
the expressiveness and overall potential of neural networks.

Despite several studies, polynomial functions have been significantly underestimated in the con-
struction of DNNs. According to Weierstrass’s approximation theorem (Weierstrass, 1885; Stone,
1932), polynomial functions can approximate any continuous function with arbitrary precision, mak-
ing them ideal candidates for activation functions in DNNs. Recent research has explored the in-
tegration of polynomial functions into DNNs, focusing on two primary aspects: (1) polynomial
activation functions (PAC) and (2) polynomial relationships between layers. We elaborate on these
approaches below.

Numerous attempts have been made to incorporate polynomial activation functions into neural net-
works. Following the ReLU construction methodology, (López-Rubio et al., 2019) introduced seg-
mented polynomial activation functions, while (Loverich, 2015) demonstrated the superiority of
these functions over segmented linear activation functions. However, the piecewise functions used
in these experiments are non-differentiable, leading to an increased risk of overfitting during train-
ing. Additionally, the use of low-order polynomials reduces the network’s nonlinearity, limiting its
ability to learn and represent complex features. Optimization challenges also persist, with (Goyal
et al., 2020) addressing these issues through the introduction of a new normalizing transformation.

Learnable parametric polynomial activation functions have also been proposed (Feng & Yang, 2023;
Wu et al., 2018; Agostinelli et al., 2014; Piazza et al., 1993; Guarnieri et al., 1999), wherein the ac-
tivation function parameters are learned during training or tuned via heuristic algorithms. However,
these networks introduce higher computational complexity and pose difficulties in maintaining sta-
ble training conditions.

Orthogonal polynomials have been explored in activation function design due to their favorable
mathematical properties. For instance, (Venkatappareddy et al., 2021) utilized Legendre polyno-
mials for constructing activation functions, but (Deepthi et al., 2023) highlighted that Legendre
polynomials may struggle to adapt to moderate and highly non-linear features. Similarly, Hermite
polynomials have been employed in activation function design (Ma & Khorasani, 2005), but their
effectiveness has been demonstrated only in networks with a single hidden layer. Chebyshev poly-
nomials have also been employed as activation functions in several studies (Deepthi et al., 2023;
Wang et al., 2022; Carini & Sicuranza, 2016; Sornam & Vanitha, 2018; Zhiqi, 2016; Lee & Jeng,
1998; Li et al., 2019), but unrestricted inputs may lead to unstable network training, necessitating
normalization techniques (Wang et al., 2022; Li et al., 2019). Moreover, current research has solely
validated Chebyshev polynomial activation functions in networks with a single hidden layer (Lee &
Jeng, 1998).

Another promising direction involves establishing polynomial relationships between layers within
the network. Previous work has primarily focused on low-order (typically second-order) polyno-
mial connections, enabling quadratic interactions between layers (Chrysos et al., 2022). While this
method has demonstrated some advantages in terms of improved representational capabilities, it re-
mains limited in scope. Higher-order polynomial connections, particularly those with advantageous
mathematical properties, have the potential to further enhance the network’s expressiveness. How-
ever, these have not been extensively explored due to the significant computational and optimization
challenges involved.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

In this section, we introduce ChebHiPoly, which is founded on two fundamental principles: the su-
perior mathematical properties of Chebyshev polynomials and the innovative construction of poly-
nomial relationships between layers.

3.1 CHEBYSHEV POLYNOMIALS

Chebyshev polynomials play a crucial role in approximation theory. The roots of Chebyshev poly-
nomials of the first kind are employed in polynomial interpolation, producing polynomials that ef-
fectively mitigate the Runge phenomenon and offer optimal uniform approximation for continuous
functions (Mason & Handscomb, 2002).

Chebyshev polynomials possess multiple definition formulations, such as trigonometric definition
(as shown in equation 1), commuting polynomials definition, Pell equation definition, etc.

Tn(x) =

cos(n arccosx), |x| ≤ 1

cosh(narccoshx), x > 1

(−1)n cosh(narccosh(−x)), x < −1

(1)

Chebyshev polynomials can also be defined recursively, with the recursive relationship for Cheby-
shev polynomials of the first kind given by:{

T0(x) = 1, T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1
(2)

The recursive property enables the stable generation of higher-order polynomials, which is beneficial
for establishing stable and efficient connections between neural network layers.

Additionally, Chebyshev polynomials provide the tightest upper and lower bounds compared to all
other polynomials on the interval [-1, 1], ensuring that the output remains constrained and does not
diverge when used to construct DNNs. Chebyshev polynomials also offer the best uniform approx-
imation to a continuous function under the maximum norm, enabling them to effectively capture
complex patterns in data and enhance the network’s representational power. These favorable math-
ematical properties endow Chebyshev polynomials with the feasibility for integration into network
architectures.

3.2 CHEBHIPOLY: ENHANCING LAYER INTERACTIONS WITH CHEBYSHEV POLYNOMIALS

Inspired by the approximation of numerical functions using a family of basis functions, ChebHiPoly
incorporates Chebyshev polynomial connections to enhance interactions between network layers.
The construction of ChebHiPoly centers around two key components: the recursive relationship
among adjacent layers and the polynomial relationship between non-adjacent layers.

3.2.1 RECURSIVE RELATIONSHIP AMONG ADJACENT LAYERS

The first aspect of ChebHiPoly’s architecture is grounded in the recursive equation of Chebyshev
polynomials, establishing a connection among three adjacent layers, as shown in equation 2. Specif-
ically, given three consecutive layers, Li−1, Li, Li+1, the output of layer Li+1 is defined in terms of
the outputs of the two preceding layers as follows:

Li+1(x) = 2x ◦ Li(x)− Li−1(x), (3)

where x represents the input features of the Chebyshev layer (also referred to as the intermediate
representations within a DNN) and ◦ denotes the Hadamard product (element-wise multiplication).
This recursive relationship facilitates stable and efficient propagation of information across the net-
work layers.

It can be observed that this recursive structure among the three adjacent layers is, in fact, equiva-
lent to constructing Chebyshev basis functions derived from the input features. By embedding the
Chebyshev polynomial structure into the network topology, the model is able to learn complex rela-
tionships between layer outputs, significantly enhancing its representational and fitting capabilities.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.2 POLYNOMIAL RELATIONSHIP BETWEEN NON-ADJACENT LAYERS

The second aspect involves establishing polynomial relationships between non-adjacent layers. This
is achieved by performing element-wise multiplication between basis functions derived from the
input features (or the output of the last layer) and the network’s output at the current layer.

Assume that x is the output of the previous layer, f(·) represents the transformation of the current
layer, and g(·) denotes a down-sampling operation to align the dimensions of x with the output f(x)
of the current layer. The aggregated features can then be expressed as follows in equation 4:

Featureagg = f(x) ◦ [L0(g(x)) + L1(g(x)) + · · ·+ Ln(g(x))] = f(x) ◦
n∑

i=0

Li(g(x)) (4)

where L0(g(x)) is an all-ones vector, meaning that f(x) ◦ L0(g(x)) = f(x) represents the pri-
mary output of the current layer. This demonstrates that ChebHiPoly offers a novel extension and
generalization of conventional neural network paradigms.

The combination of establishing recursive relationship among adjacent layers and aggregating poly-
nomial relationship between non-adjacent layers effectively incorporates both local and global poly-
nomial interactions within the network, significantly enhancing its representational power and fitting
capabilities.

3.3 IMPLIMENTATION DETAILS

Although several closed-form expressions exist for calculating n-order Chebyshev polynomials, in-
cluding trigonometric definitions (see equation 1), commuting polynomials, and Pell equation-based
formulations, our extensive empirical studies demonstrate that the recursive formulation (see equa-
tion 2) provides superior numerical stability, which is crucial for ensuring consistent performance
and facilitating reliable gradient propagation during the training process. This recursive approach
effectively preserves the integrity of both the parameters and their corresponding gradients, signifi-
cantly reducing the risk of overflow during computation. Considering the generally low-degree poly-
nomials employed in practice, the additional computational complexity introduced by the recursive
formulation is negligible and does not substantially affect the model’s overall efficiency. Further-
more, we propose an optimized implementation leveraging dynamic programming principles, which
strikes an efficient balance between time complexity (O(n)) and space complexity ((O(1))).

By definition, Chebyshev polynomials require their arguments to lie within the interval [-1, 1] by
definition. Consequently, to effectively integrate Chebyshev polynomial-based layers into neural
network architectures, it is essential to transform input vectors to meet this constraint. Our com-
prehensive empirical study reveals that applying non-linear transformations, such as Sigmoid and
Softmax, to the input components substantially outperforms traditional linear normalization tech-
niques.

4 EXPERIMENTS

To evaluate the effectiveness of ChebHiPoly, we conducted comprehensive experiments across three
major tasks: function approximation, semantic segmentation, and image classification. The function
approximation task encompasses fitting various numerical functions (approximating known func-
tions), image generation (approximating unknown functions), and learning physical laws. Each
experiment was designed to compare the performance of traditional neural network architectures
with their ChebHiPoly counterparts.

4.1 FUNCTION APPROXIMATION

To assess the fitting capabilities of ChebHiPoly, we conduct a series of experiments focused on
function approximation. This exploration highlights ChebHiPoly’s effectiveness in approximating
both known functions and unknown functions, as well as learning physical laws. The ability to
generalize across these diverse domains is crucial for demonstrating the robustness of our model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8 9 10
Order

0.0

0.5

1.0

1.5

2.0

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(a) x2

2 3 4 5 6 7 8 9 10
Order

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(b) x1x2x3x4

2 3 4 5 6 7 8 9 10
Order

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Lo
ss

MLP
Poly-MLP
Cheby-MLP

(c) exp(sin(x1 + x2) + x3 + x2
4)

Figure 2: The test MSE loss of the MLP and its ChebHiPoly and PolyNet variants with different
polynomial orders on numerical functions. (a) x2. (b) x1x2x3x4. (c) exp(sin(x1 + x2) + x3 + x2

4).

Table 1: The FID score of UNet-diffusion and Cheby-UNet-diffusion on MNIST.

Order 1 2 3 4 5 6 7 8 9

MNIST ddpm with Baseline UNet-diffusion: 85.04
Cheby-UNet 85.68 81.31 78.14 80.84 89.74 86.52 84.40 84.44 86.39

4.1.1 NUMERICAL FUNCTION APPROXIMATION (KNOWN FUNCTIONS)

We first utilize MLPs, along with their ChebHiPoly and PolyNet (substituting cheby-
shev polynomials in ChebHiPoly with ordinary polynomials) variants, to approxi-
mate a variety of numerical functions, ranging from simple elementary functions
to more complex ones. Specifically, we evaluate the following univariate func-

tions: x2,
√
x,

1

x
, log x, expx, sinx, cosx, arcsinx, arccosx, arctanx,

sgnx, sigmoid(x), tanhx, exp(−x2), and the following multivariate functions of four variables:
x1x2x3x4, sin(x

2
1 + x2

2 + x2
3 + x2

4), sin(x
2
1x

2
2x

2
3x

2
4), exp(sin(x1 + x2) + x3 + x2

4), exp(sin(x
2
1 +

x2
2)+sin(x2

3+x2
4)). The train and test datasets are generated from the selected functions, consisting

of random inputs paired with their corresponding outputs. Each model, after being trained for
30 epochs, is evaluated using mean square error (MSE) loss on the test set. Several results are
presented in Figure 2, with the remaining results shown in Figure 6 in Appendix A.

As shown in Figures 2 and 6, ChebHiPoly exhibits significantly lower test MSE loss compared to
both the original network and PolyNet, highlighting its superior approximation capabilities relative
to the baseline. Additionally, ChebHiPoly’s test loss decreases as the polynomial order increases,
indicating that higher-order approximations lead to enhanced fitting capacity.

4.1.2 IMAGE GENERATION (UNKNOWN FUNCTIONS)

Image generation of diffusion models can be conceptualized as a two-step process (Ho et al., 2020):
first, approximating a target distribution or function in the latent space, and then sampling from
this distribution to generate images. Consequently, the quality of the generated images reflects the
model’s ability to accurately fit the target function.

We employed UNet-diffusion (Ho et al., 2020) and its ChebHiPoly variant (Cheby-UNet-diffusion)
to generate images based on the MNIST dataset. Each model was trained for 1,000 epochs with
a batch size of 64. We conducted 5 rounds of training and sampling, with each round involving
1,000 sampling steps to generate 1,000 images. The quality of the generated images was assessed
using the Frechet Inception Distance (FID) score (Heusel et al., 2017) in Table 1. As shown in
Table 1, Cheby-UNet-diffusion achieves lower FID scores than the baseline across most polynomial
orders, indicating that ChebHiPoly has an enhanced capacity for learning unknown functions or
distributions. We also visualize 64 generated samples for comparison, as shown in Figure 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) UNet-diffusion (b) Cheby-UNet-diffusion

Figure 3: The sampling images of UNet-diffusion and Cheby-UNet-diffusion on MNIST. (a) UNet-
diffusion. (b) Cheby-UNet-diffusion.

Table 2: The mse-loss between simulated trajectory and ground truth predicted by NODE, HNN and
their ChebHiPoly variants.

Order 1 2 3 4 5 6 7 8 9

bouncing ball with Baseline NODE: 0.231
Cheby-NODE 0.499 0.286 0.225 0.020 0.071 0.376 0.024 0.451 0.084

2-body problem with Baseline HNN: 6.404 (Unit: 1e-6)

Cheby-HNN 4.474 5.994 2.437 2.220 6.545 5.727 4.245 4.454 3.087

3-body problem with Baseline HNN: 4.437 (Unit: 1e-1)

Cheby-HNN 4.981 4.531 4.242 4.373 4.121 4.428 4.029 4.513 4.219

real pendulum problem with Baseline HNN: 5.982 (Unit: 1e-3)

Cheby-HNN 5.807 5.794 5.805 5.808 5.803 5.802 5.793 5.806 5.807

4.1.3 PHYSICAL LAW LEARNING

While previous results have demonstrated ChebHiPoly’s robust fitting capabilities for both known
and unknown functions, concerns about potential overfitting naturally arise. To address this, we
conduct experiments on modeling object trajectories in real-world physical scenarios. To be con-
crete, we employ Neural ODEs (NODE)(Chen et al., 2018) and Hamiltonian Neural Networks
(HNN)(Greydanus et al., 2019) which are commonly used for such scenarios, and compare the
kinetic energy, potential energy, and total mechanical energy of the objects between the baselines
and the ChebHiPoly variants (Cheby-NODE and Cheby-HNN). We use NODE and Cheby-NODE to
model the trajectory of a bouncing ball, training for 1,000 iterations, and employ HNN and Cheby-
HNN to simulate two-body and three-body problems, as well as the motion of a real pendulum,
with 10,000 iterations of training. For HNN and Cheby-HNN, we measure both the trajectory errors
and energy discrepancies. Overfitting would manifest as small trajectory errors coupled with large
energy discrepancies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Trajectories
True path, body 0
True path, body 1
HNN path, body 0
HNN path, body 1

0 10 20 30 40 50
Time

0.6

0.4

0.2

0.0

0.2

0.4
Energy

Real Potential
Real Kinetic
Real Total
Simulated Potential
Simulated Kinetic
Simulated Total

(a) HNN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.0

0.5

0.0

0.5

1.0

y

Trajectories
True path, body 0
True path, body 1
Cheby-HNN path, body 0
Cheby-HNN path, body 1

0 10 20 30 40 50
Time

0.6

0.4

0.2

0.0

0.2

0.4
Energy

Real Potential
Real Kinetic
Real Total
Simulated Potential
Simulated Kinetic
Simulated Total

(b) Cheby-HNN

Figure 4: The 2-body trajectories predicted by HNN and Cheby-HNN. (a) HNN. (b) Cheby-HNN.

The trajectories of the 2-body problem predicted by HNN and Cheby-HNN are shown in Figure 4,
while additional results are presented in Appendix B due to space limitations. These include: (1)
the trajectories of the 3-body problem and a real pendulum predicted by HNN and Cheby-HNN in
Figure 8 and Figure 10, respectively; (2) energy predictions for the 2-body and 3-body problems
across various seeds, using HNN and Cheby-HNN, in Figure 7 and Figure 9; and (3) the trajectories
of a bouncing ball predicted by NODE and Cheby-NODE in Figure 11.

The mse-loss of energy of 2-body, 3-body, and real pendulum problem of HNN and Cheby-HNN is
shown in Table 3:

Table 3: The mse-loss of energy of various physical scenarios of HNN and Cheby-HNN.
Scenario 2-body 3-body real pendulum

HNN 2.903× 10−5 1.096× 10−2 7.500× 10−3

Cheby-HNN 1.085× 10−5 6.093× 10−3 7.494× 10−3

Through these comprehensive experiments, we have demonstrated that ChebHiPoly exhibits supe-
rior approximation capabilities compared to the original network architecture, while showing no
signs of overfitting. This robust performance suggests that ChebHiPoly is well-suited for learning
and modeling physical laws.

4.2 SEMANTIC SEGMENTATION

We further demonstrate that ChebHiPoly is capable of enhancing performance on classical computer
vision tasks. We conduct a series of experiments focused on semantic segmentation, a challenging
task that requires precise delineation of objects within an image. This task is particularly relevant
in applications such as medical diagnosis, autonomous driving, and scene understanding, where
accurate pixel-level classification is crucial.

We evaluate the effectiveness of Chebyshev polynomial connections based on the classical UNet
architecture. UNet, recognized for its unique structure, employs skip connections that enable direct
interactions between layers at varying depths (Ronneberger et al., 2015). These connections allow
the model to combine high-level semantic information with low-level spatial details, improving its
ability to generate precise segmentation masks. However, while UNet establishes these interac-
tions, they remain relatively straightforward. In contrast, Cheby-UNet, the ChebHiPoly variant of
Unet, aims to leverage Chebyshev polynomial connections to facilitate more complex and nuanced
interactions across layers.

We compare the segmentation performance on two prominent datasets: ACDC (Automated Car-
diac Diagnosis Challenge)(Bernard et al., 2018) and BraTS19 (Brain Tumor Segmentation Chal-
lenge)(Bakas, 2020). To thoroughly assess performance across different settings, we implement a
series of configurations, including 2D fully supervised, 2D semi-supervised, and 3D fully supervised
experiments. The Dice scores of both UNet and Cheby-UNet are presented in Tab. 4. We randomly
select an image from the test set for visualization, with the results depicted in Fig. 12 in Appendix
C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: The dice value of UNet and Cheby-UNet on ACDC and BraTS19.

Order 1 2 3 4 5 6 7 8 9

ACDC 2D-fully-supervise with Baseline UNet: 0.7984
Cheby-UNet 0.8122 0.7900 0.8070 0.8031 0.7923 0.8040 0.8077 0.7896 0.8013

ACDC 2D-semi-supervise with Baseline UNet: 0.8225

Cheby-UNet 0.8305 0.8270 0.8205 0.8320 0.8328 0.8243 0.8338 0.8328 0.8339

BraTS19 3D-fully-supervise with Baseline UNet: 0.8291

Cheby-UNet 0.8306 0.8389 0.8415 0.8448 0.8404 0.8279 0.8324 0.8417 0.8365

Table 5: The test accuracy of models and their ChebHiPoly on CIFAR100.
Order 1 2 3 4 5 6 7 8 9

Using PCNN Architecture with Baseline: 59.8
Poly-PCNN 59.8 59.5 59.4 59.4 59.8 60.0 59.7 59.7 59.6
Cheby-PCNN 59.7 60.5 60.2 59.9 60.3 60.4 60.4 60.0 60.2

Using MobileNet Architecture with Baseline: 60.0
Poly-MobileNet 59.7 59.8 59.3 60.1 60.2 60.8 59.6 60.1 O
Cheby-MobileNet 60.0 60.0 60.2 60.5 60.4 60.4 60.3 60.0 60.2

Using ResNet18 Architecture with Baseline: 76.1
Poly-ResNet18 75.6 76.7 76.0 76.4 76.4 76.0 75.8 75.9 75.7
Cheby-ResNet18 75.8 75.5 76.3 76.6 76.1 76.6 76.4 76.3 76.1

Using ResNet34 Architecture with Baseline: 76.5
Poly-ResNet34 76.7 77.0 77.3 76.2 76.8 76.9 76.7 76.7 76.2
Cheby-ResNet34 76.5 77.0 77.1 76.7 76.8 76.8 75.8 76.7 76.6

The results of our experiments demonstrate that Cheby-UNet consistently outperforms the tradi-
tional UNet architecture across all experimental configurations, as measured by the Dice metric.
This improvement highlights the effectiveness of ChebHiPoly in enhancing the model’s representa-
tional power, enabling better feature extraction and segmentation accuracy. Furthermore, the results
reinforce our hypothesis regarding the utility of complex inter-layer relationships. By integrating
Chebyshev polynomial connections, Cheby-UNet effectively captures intricate interactions between
layers, leading to superior performance in delineating object boundaries and recognizing subtle dis-
tinctions between classes.

4.3 IMAGE CLASSIFICATION

We further evaluate the performance of ChebHiPoly on the classification task using the CIFAR-10
(Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009) datasets. The baseline models,
including MLP, PCNN (a plain 5-layer CNN with 5 hidden states), MobileNetV2, ResNet18, and
ResNet34, and the corresponding ChebHiPoly and PolyNet variants, are trained from scratch for
120 epochs. The batch size for each model is set to 128, with an initial learning rate of 0.1, which
is reduced by a factor of 10 at epochs 40, 60, 80, and 100. We use SGD with momentum of 0.9 and
a weight decay of 5 × 10−4 as the optimizer. All other settings for both the baseline models and
ChebHiPoly are kept identical. The test accuracy of various models on CIFAR-10 and CIFAR-100
are presented in Table 6 (in Appendix D), Table 7 (in Appendix D) and Table 5, respectively, where
’O’ in the tables stands for numerical overflow.

Through these comprehensive experiments, we have demonstrated that ChebHiPolys of most orders
perform better than the original models. Besides, the recursive formulation of Chebyshev poly-
nomials avoid numerical overflow. We can conclude that the learning and optimization ability of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Cheby-CNN (b) Poly-CNN

Figure 5: The cosine similarity among features of different orders. (a) Cheby-CNN. (b) Poly-CNN.

ChebHiPoly is exceeding that of the corresponding model and PolyNet thus it presents a promising
approach for application in various visual tasks.

To elucidate the irregular performance variations of the same model across different approximation
orders, we examine this phenomenon by computing the correlation matrices between features of
different orders for both Cheby-CNN and Poly-CNN at the final epoch of training, as shown in
Figure 5. Notably, Cheby-CNN exhibits lower overall feature similarity compared to Poly-CNN.
In particular, low-order features (the first three orders) display weak or even negative correlations,
while higher-order features demonstrate stronger correlations. This reveals several advantageous
properties of Cheby-CNN:

• The element-wise multiplication with orthogonal polynomials reduces feature correlation, facil-
itating the extraction of more compact data structures.

• The strong correlation among high-order features suggests that low-order features are already
sufficient for representing the underlying information, indicating potential for parameter compres-
sion.

5 CONCLUSION

In this paper, we propose ChebHiPoly, a novel neural network architecture that utilizes Cheby-
shev polynomial connections to enhance representational capacity and computational efficiency. By
introducing polynomial transformations between layers, ChebHiPoly offers a more expressive and
flexible framework with robust approximation capabilities, enabling superior performance in various
tasks. Our empirical results demonstrate that ChebHiPoly consistently outperforms traditional neu-
ral networks in terms of both accuracy and resource efficiency, making it a promising approach for
advancing deep learning models. These findings suggest that polynomial-based layer connections
could play a key role in future neural network developments.

REFERENCES

Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning activation func-
tions to improve deep neural networks. arXiv preprint arXiv:1412.6830, 2014.

Spyridon (Spyros) Bakas. Brats miccai brain tumor dataset, 2020. URL https://dx.doi.
org/10.21227/hdtd-5j88.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, August 2013. ISSN
0162-8828. doi: 10.1109/TPAMI.2013.50.

10

https://dx.doi.org/10.21227/hdtd-5j88
https://dx.doi.org/10.21227/hdtd-5j88

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann
Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, Gerard San-
roma, Sandy Napel, Steffen Petersen, Georgios Tziritas, Elias Grinias, Mahendra Khened, Vargh-
ese Alex Kollerathu, Ganapathy Krishnamurthi, Marc-Michel Rohé, Xavier Pennec, Maxime
Sermesant, Fabian Isensee, Paul Jäger, Klaus H. Maier-Hein, Peter M. Full, Ivo Wolf, Sandy
Engelhardt, Christian F. Baumgartner, Lisa M. Koch, Jelmer M. Wolterink, Ivana Išgum, Yeong-
gul Jang, Yoonmi Hong, Jay Patravali, Shubham Jain, Olivier Humbert, and Pierre-Marc Jodoin.
Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis:
Is the problem solved? IEEE Transactions on Medical Imaging, 37(11):2514–2525, 2018. doi:
10.1109/TMI.2018.2837502.

Alberto Carini and Giovanni L Sicuranza. A study about chebyshev nonlinear filters. Signal Pro-
cessing, 122:24–32, 2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Grigorios G. Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Jiankang Deng, Yannis Panagakis,
and Stefanos Zafeiriou. Deep polynomial neural networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(8):4021–4034, 2022. doi: 10.1109/TPAMI.2021.3058891.

M Deepthi, GNVR Vikram, and P Venkatappareddy. Development of a novel activation function
based on chebyshev polynomials: an aid for classification and denoising of images. The Journal
of Supercomputing, pp. 1–17, 2023.

Shi Dong, Ping Wang, and Khushnood Abbas. A survey on deep learning and its applications.
Computer Science Review, 40:100379, 2021.

Han-Shen Feng and Cheng-Hsiung Yang. Polylu: A simple and robust polynomial-based linear unit
activation function for deep learning. IEEE Access, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Mohit Goyal, Rajan Goyal, and Brejesh Lall. Improved polynomial neural networks with normalised
activations. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2020.
doi: 10.1109/IJCNN48605.2020.9207535.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

Stefano Guarnieri, Francesco Piazza, and Aurelio Uncini. Multilayer feedforward networks with
adaptive spline activation function. IEEE Transactions on Neural Networks, 10(3):672–683, 1999.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp.
6629–6640, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82–97, 2012.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2261–2269, 2017. doi: 10.1109/CVPR.2017.243.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Tsu-Tian Lee and Jin-Tsong Jeng. The chebyshev-polynomials-based unified model neural net-
works for function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 28(6):925–935, 1998.

Yuchen Li, Frank Rudzicz, and Jekaterina Novikova. Variations on the chebyshev-lagrange activa-
tion function. arXiv preprint arXiv:1906.10064, 2019.

Ezequiel López-Rubio, Francisco Ortega-Zamorano, Enrique Domı́nguez, and José Muñoz-Pérez.
Piecewise polynomial activation functions for feedforward neural networks. Neural Processing
Letters, 50:121–147, 2019.

John Loverich. Discontinuous piecewise polynomial neural networks. arXiv preprint
arXiv:1505.04211, 2015.

Liying Ma and Khashayar Khorasani. Constructive feedforward neural networks using hermite
polynomial activation functions. IEEE Transactions on Neural Networks, 16(4):821–833, 2005.

John C Mason and David C Handscomb. Chebyshev polynomials. CRC press, 2002.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Oyebade K. Oyedotun, Kassem Al Ismaeil, and Djamila Aouada. Why is everyone training very
deep neural network with skip connections? IEEE Transactions on Neural Networks and Learn-
ing Systems, 34(9):5961–5975, 2023. doi: 10.1109/TNNLS.2021.3131813.

F Piazza, A Uncini, and M Zenobi. Neural network complexity reduction using adaptive polynomial
activation functions. In ICANN’93: Proceedings of the International Conference on Artificial
Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3, pp. 452–455. Springer,
1993.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

M Sornam and V Vanitha. Application of chebyshev neural network for function approximation.
International Journal of Computer Sciences and Engineering, 6(4):201–204, 2018.

Marshall Harvey Stone. Linear transformations in Hilbert space and their applications to analysis,
volume 15. American Mathematical Soc., 1932.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

P Venkatappareddy, Jayanth Culli, Siddharth Srivastava, and Brejesh Lall. A legendre polynomial
based activation function: An aid for modeling of max pooling. Digital Signal Processing, 115:
103093, 2021.

Michael Wainberg, Daniele Merico, Andrew Delong, and Brendan J Frey. Deep learning in
biomedicine. Nature biotechnology, 36(9):829–838, 2018.

Jiachuan Wang, Lei Chen, and Charles Wang Wai Ng. A new class of polynomial activation func-
tions of deep learning for precipitation forecasting. In Proceedings of the Fifteenth ACM Interna-
tional Conference on Web Search and Data Mining, pp. 1025–1035, 2022.

Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer
reellen veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
zu Berlin, 2:633–639, 1885.

Wei Wu, Jian Liu, Huimei Wang, Fengyi Tang, and Ming Xian. Ppolynets: Achieving high pre-
diction accuracy and efficiency with parametric polynomial activations. IEEE Access, 6:72814–
72823, 2018.

Yang Zhiqi. Gesture learning and recognition based on the chebyshev polynomial neural network. In
2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference,
pp. 931–934. IEEE, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX 1: NUMERICAL FUNCTION APPROXIMATION

This appendix presents supplementary results from the numerical approximation experiments de-
scribed in Section 4.1.1.

The test mse-loss of various numerical functions in shown in Figure 6:

2 3 4 5 6 7 8 9 10
Order

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(a)
√
x

2 3 4 5 6 7 8 9 10
Order

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(b) 1
x

2 3 4 5 6 7 8 9 10
Order

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Lo
ss

MLP
Poly-MLP
Cheby-MLP

(c) log x

2 3 4 5 6 7 8 9 10
Order

0.000

0.002

0.004

0.006

0.008

Lo
ss

MLP
Poly-MLP
Cheby-MLP

(d) expx

2 3 4 5 6 7 8 9 10
Order

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(e) sinx

2 3 4 5 6 7 8 9 10
Order

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(f) cosx

2 3 4 5 6 7 8 9 10
Order

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(g) arcsinx

2 3 4 5 6 7 8 9 10
Order

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

1e 5

MLP
Poly-MLP
Cheby-MLP

(h) arccosx

2 3 4 5 6 7 8 9 10
Order

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

1e 6

MLP
Poly-MLP
Cheby-MLP

(i) arctanx

2 3 4 5 6 7 8 9 10
Order

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Lo
ss

MLP
Poly-MLP
Cheby-MLP

(j) signx

2 3 4 5 6 7 8 9 10
Order

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

1e 8

MLP
Poly-MLP
Cheby-MLP

(k) Sigmoid(x)

2 3 4 5 6 7 8 9 10
Order

0

1

2

3

4

Lo
ss

1e 6

MLP
Poly-MLP
Cheby-MLP

(l) tanhx

2 3 4 5 6 7 8 9 10
Order

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

1e 6

MLP
Poly-MLP
Cheby-MLP

(m) exp(−x2)

2 3 4 5 6 7 8 9 10
Order

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

Lo
ss

MLP
Poly-MLP
Cheby-MLP

(n) sin(x2
1+x2

2+x2
3+x2

4)

2 3 4 5 6 7 8 9 10
Order

2.0

2.5

3.0

3.5

4.0

Lo
ss

1e 6

MLP
Poly-MLP
Cheby-MLP

(o) sin(x2
1x

2
2x

2
3x

2
4)

2 3 4 5 6 7 8 9 10
Order

0.0001

0.0002

0.0003

0.0004

0.0005

Lo
ss

MLP
Poly-MLP
Cheby-MLP

(p) exp(sin(x2
1 + x2

2) +
sin(x2

3 + x2
4))

Figure 6: The test MSE loss of MLP and its ChebHiPoly and PolyNet variants of different orders on
various numerical functions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B APPENDIX 2: PHYSICAL LAW LEARNING

This appendix presents supplementary results from the physical law learning experiments described
in Section 4.1.3.

The energy of 2-body problem predicted by HNN and Cheby-HNN across various seeds are shown
in Figure 7:

0 5 10 15 20 25
Time

0.150

0.148

0.146

0.144

0.142

0.140

0.138

To
ta

l e
ne

rg
y

Random seed 0

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.182

0.180

0.178

0.176

0.174

0.172

0.170

To
ta

l e
ne

rg
y

Random seed 1

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.286

0.284

0.282

0.280

0.278

0.276

0.274

0.272

0.270

To
ta

l e
ne

rg
y

Random seed 2

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.164

0.162

0.160

0.158

0.156

0.154

0.152

To
ta

l e
ne

rg
y

Random seed 3

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.160

0.158

0.156

0.154

0.152

0.150

0.148

0.146

0.144

To
ta

l e
ne

rg
y

Random seed 4
Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.134

0.132

0.130

0.128

0.126

0.124

0.122

0.120

To
ta

l e
ne

rg
y

Random seed 5

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.158

0.156

0.154

0.152

0.150

0.148

0.146

0.144

To
ta

l e
ne

rg
y

Random seed 6
Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.160

0.158

0.156

0.154

0.152

0.150

0.148

0.146

To
ta

l e
ne

rg
y

Random seed 7

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.134

0.132

0.130

0.128

0.126

0.124

0.122

0.120

To
ta

l e
ne

rg
y

Random seed 8

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.258

0.256

0.254

0.252

0.250

0.248

0.246

To
ta

l e
ne

rg
y

Random seed 9

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.162

0.160

0.158

0.156

0.154

0.152

0.150

0.148

To
ta

l e
ne

rg
y

Random seed 10

Ground truth
HNN
Cheby_HNN

0 5 10 15 20 25
Time

0.246

0.244

0.242

0.240

0.238

0.236

0.234

0.232

To
ta

l e
ne

rg
y

Random seed 11

Ground truth
HNN
Cheby_HNN

Figure 7: The 2-body energy predicted by HNN and Cheby-HNN across various seeds. (a) HNN.
(b) Cheby-HNN.

The trajectories of 3-body problem predicted by HNN and Cheby-HNN are shown in Figure 8:

2 1 0 1 2
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Trajectories
True path, body 0
True path, body 1
True path, body 2
HNN path, body 0
HNN path, body 1
HNN path, body 2

0 1 2 3 4 5
Time

1.5

1.0

0.5

0.0

0.5

Energy

Real Potential
Real Kinetic
Real Total
Simulated Potential
Simulated Kinetic
Simulated Total

(a) HNN

2 1 0 1 2
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Trajectories
True path, body 0
True path, body 1
True path, body 2
Cheby_HNN path, body 0
Cheby_HNN path, body 1
Cheby_HNN path, body 2

0 1 2 3 4 5
Time

1.5

1.0

0.5

0.0

0.5

Energy

Real Potential
Real Kinetic
Real Total
Simulated Potential
Simulated Kinetic
Simulated Total

(b) Cheby-HNN

Figure 8: The 3-body trajectories predicted by HNN and Cheby-HNN. (a) HNN. (b) Cheby-HNN.

The energy of 3-body problem of HNN and Cheby-HNN across various seeds are shown in Figure
9:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

0.85

0.80

0.75

0.70

0.65

0.60

0.55

To
ta

l e
ne

rg
y

Random seed 0
Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

1.15

1.10

1.05

1.00

0.95

0.90

0.85

0.80

To
ta

l e
ne

rg
y

Random seed 1
Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

1.10

1.05

1.00

0.95

0.90

0.85

To
ta

l e
ne

rg
y

Random seed 2

Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

To
ta

l e
ne

rg
y

Random seed 3
Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

0.92

0.90

0.88

0.86

0.84

0.82

0.80

0.78

0.76

To
ta

l e
ne

rg
y

Random seed 4

Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

0.90

0.85

0.80

0.75

0.70

0.65

0.60

To
ta

l e
ne

rg
y

Random seed 5
Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

0.90

0.88

0.86

0.84

0.82

0.80

0.78

0.76

To
ta

l e
ne

rg
y

Random seed 6

Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

0.80

0.75

0.70

0.65

0.60

0.55

To
ta

l e
ne

rg
y

Random seed 7
Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

0.88

0.86

0.84

0.82

0.80

0.78

0.76

0.74

0.72

To
ta

l e
ne

rg
y

Random seed 8

Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

1.05

1.00

0.95

0.90

0.85

0.80

To
ta

l e
ne

rg
y

Random seed 9
Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

1.05

1.00

0.95

0.90

0.85

0.80

To
ta

l e
ne

rg
y

Random seed 10

Ground truth
HNN
Cheby_HNN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

1.2

1.1

1.0

0.9

0.8

To
ta

l e
ne

rg
y

Random seed 11

Ground truth
HNN
Cheby_HNN

Figure 9: The 3-body energy predicted by HNN and Cheby-HNN across various seeds. (a) HNN.
(b) Cheby-HNN.

The trajectories of a real pendulum predicted by HNN and Cheby-HNN are shown in Figure 10:

Real pendulum

1 0 1
q

1.5

1.0

0.5

0.0

0.5

1.0

1.5

p

Real pendulum data

Train
Test

0.5 0.0 0.5
q

1.0

0.5

0.0

0.5

1.0

p

Trajectories

HNN
Cheby-HNN

Figure 10: The real pendulum trajectories predicted by HNN and Cheby-HNN. (a) HNN. (b) Cheby-
HNN.

The trajectories of a bouncing ball predicted by NODE and Cheby-NODE are shown in Figure 11:

C APPENDIX 3: SEMANTIC SEGMENTATION

This appendix presents supplementary results from the semantic segmentation experiments de-
scribed in Section 4.2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) NODE (b) Cheby-NODE

Figure 11: The trajectories of a bouncing ball predicted by NODE and Cheby-NODE. (a) NODE.
(b) Cheby-NODE.

(a) ACDC fully supervised

(b) ACDC semi supervised

(c) BraTS19 fully supervised

Figure 12: The segmentation results of ACDC and BraTS19. (a) ACDC for fully supervised task.
(b) ACDC for semi supervised task. (c) BraTS19 for fully supervised task.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D APPENDIX 4: IMAGE CLASSIFICATION

This appendix presents supplementary results from the image classification experiments described
in Section 4.3.

The test accuracy of MLP models on CIFAR-10 and CIFAR-100 are presented in Table 6, while that
of other models on CIFAR-10 in Table 7.

Table 6: The test accuracy of models and their ChebHiPoly on CIFAR using MLP as the backbone.
Order 1 2 3 4 5 6

Experimental Results on CIFAR-10
MLP 55.0 55.2 54.5 54.2 53.5 53.3
Poly-MLP 53.6 54.1 55.1 O O O
Cheby-MLP 53.6 53.9 54.7 55.8 56.5 56.2

Experimental Results on CIFAR-100
MLP 26.5 26.2 27.0 25.6 25.7 25.7
Poly-MLP 27.5 27.9 27.5 27.1 O O
Cheby-MLP 27.5 27.7 27.8 29.8 29.8 30.1

Table 7: The test accuracy of models and their ChebHiPoly on CIFAR10.
Order 1 2 3 4 5 6 7 8 9

Using PCNN Architecture with Baseline: 87.2
Poly-PCNN 87.3 87.3 87.4 87.7 87.6 87.5 88.0 87.2 87.2
Cheby-PCNN 87.4 87.7 87.6 87.8 87.4 87.6 87.7 87.7 87.6

Using MobileNet Architecture with Baseline: 84.7
Poly-MobileNet 85.0 84.6 84.8 84.8 84.9 84.9 84.4 85.0 84.5
Cheby-MobileNet 84.9 85.1 84.8 85.1 84.9 85.0 85.3 85.4 84.6

Using ResNet-18 Architecture with Baseline: 94.5
Poly-ResNet18 94.6 94.6 94.4 94.3 94.7 94.3 94.3 94.3 94.4
Cheby-ResNet18 94.3 94.7 94.4 94.5 94.3 94.6 94.4 94.4 94.6

Using ResNet-34 Architecture with Baseline: 94.6
Poly-ResNet34 94.6 94.4 94.6 94.7 94.7 94.6 94.7 94.3 94.8
Cheby-ResNet34 94.8 94.4 94.8 94.8 94.3 94.7 94.8 94.6 94.6

18

	Introduction
	Related Work
	Methodology
	Chebyshev polynomials
	ChebHiPoly: Enhancing layer interactions with Chebyshev polynomials
	Recursive relationship among adjacent layers
	Polynomial relationship between non-adjacent layers

	Implimentation details

	Experiments
	Function Approximation
	Numerical function approximation (known functions)
	Image generation (unknown functions)
	Physical law learning

	Semantic segmentation
	Image classification

	Conclusion
	Appendix 1: Numerical function approximation
	Appendix 2: Physical law learning
	Appendix 3: Semantic segmentation
	Appendix 4: Image classification

